Supporting Information

Organocatalyzed Controlled ROP of β-Lactones towards Poly(HydroxyAlkanoate)s:

From β -Butyrolactone to Benzyl β -Malolactone Polymers

Cédric G. Jaffredo, Jean-François Carpentier,^{*} and Sophie M. Guillaume^{*}

Institut des Sciences Chimiques de Rennes, Organometallics, Materials and Catalysis, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France

Figure S1. SEC traces of PMLABes produced from the ROP of MLABe mediated by organocatalysts: (top) TBD (Table 1, entry 2); (middle) DBU (Table 1, entry 6); (bottom) BEMP (Table 1, entry 9).

Figure S2. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of a high molar mass ($M_{n,NMR} = 80400 \text{ g.mol}^{-1}$), twice-precipitated PMLABe produced in the presence of TBD, illustrating the possibility to reliably evaluate $M_{n,NMR}$ even at such high molar mass polymers (Table 1, entry 4) (* marker stands for residual CH₂Cl₂).

Figure S3. Kinetics of the ROP of bulk MLABe promoted by TBD at 60 °C (Table 1, entry 2); $k_{app} = 1.252 (\pm 2.10^{-3}) h^{-1}$, $R^2 = 0.999$.

Figure S4. Kinetics of the bulk ROP of MLABe promoted by DBU at 60 °C (Table 1, entry 7; $k_{app} = 2.61(\pm 3.10^{-2}) \text{ h}^{-1}$, $R^2 = 0.943$).

Figure S5. Kinetics of the bulk ROP of MLABe promoted by BEMP at 60 °C (Table 1, entry 10); $k_{app} = 3.8 (\pm 1.10^{-1}) \text{ h}^{-1}$, $R^2 = 0.901$.

Figure S6. ¹³C{¹H} NMR (125 MHz; CDCl₃, 25 °C) spectrum of a twice-precipitated PMLABe produced in the presence of DBU (Table 1, entry 6).

Figure S7. ¹³C{¹H} NMR (125 MHz; CDCl₃, 25 °C) spectrum of a twice-precipitated PMLABe produced in the presence of BEMP (Table 1, entry 9).

Figure S8. ${}^{31}P{}^{1}H$ NMR (121 MHz, CDCl₃, 25 °C) spectrum of a twice-precipitated PMLABe produced in the presence of BEMP (Table 1, entry 10).

Figure S9. ³¹P{¹H} NMR (121 MHz, CDCl₃, 25 °C) spectrum of BEMP.

Figure S10. MALDI-ToF mass spectrum of a freshly synthesized PMLABe sample produced from DBU, using CHCA as matrix (Table 1, entry 6). The major population corresponds to $[DBU\{MLABe\}_nC(O)CH=CH(CO_2Be)]^+$.H₂O macromolecules ([M]⁺·H₂O), with m/z = 771.1 g.mol⁻¹ for n = 3 (isotopic simulation for $[DBU\{MLABe\}_3C(O)CH=CH(CO_2Be)]^+$.H₂O, ${}^{12}C_{42}{}^{1}H_{47}{}^{16}O_{12}{}^{14}N_2$, m/z = 771.4 g.mol⁻¹). The minor populations correspond to m/z: $[M]^+ = 753.1$ g.mol⁻¹ and $m/z : [M]^+ \cdot H_2O - OCH_2Ph (107) - H = 663.1$ g.mol⁻¹.

Figure S11. MALDI-ToF mass spectrum of a freshly synthesized PMLABe sample produced from BEMP, using CHCA as matrix (Table 1, entry 9). The major population corresponds to $[BEMP{MLABe}_nC(O)CH=CH(CO_2Be)]^+$. H₂O macromolecules ([M]⁺. H₂O) with m/z = $g.mol^{-1}$ for 893.2 (isotopic simulation for п = $^{12}C_{46}^{11}H_{62}^{16}O_{12}^{14}N_4^{31}P_1, m/z =$ $[BEMP{MLABe}_2C(O)CH=CH(CO_2Be)]^+.H_2O,$ 893.4 g.mol⁻¹). The minor populations correspond to $[M]^+$ – Et + H= = 847.0 g.mol⁻¹ and to $[M]^+$.H₂O – Et – H = 863.0 g.mol⁻¹.

Figure S12. MALDI-ToF mass spectrum of a *non-freshly* synthesized PMLABe sample, initially produced from DBU, using IAA as matrix (Table 1, entry 6). The major population corresponds to $[HO{MLABe}_nC(O)CH=CH(CO_2Be)]Na^+$ macromolecules $([M]^+ \cdot Na)$, with m/z = 1053.2 g.mol⁻¹ for n = 4 (isotopic simulation for $[HO{MLABe}_4C(O)CH=CH(CO_2Be)]Na^+$, ${}^{12}C_{55}{}^{1}H_{50}{}^{16}O_{20}{}^{3}Na_1$, m/z = 1053.2 g.mol⁻¹).

Figure S13. MALDI-ToF mass spectrum of a non-freshly synthesized PMLABe sample, initially produced from BEMP, using IAA as matrix (Table 1, entry 9). The major population corresponds to $[HO{MLABe}_nC(O)CH=CH(CO_2Be)]Na^+$ macromolecules $([M]\cdot Na^+)$ with 1053.2 $g.mol^{-1}$ for (isotopic m/z= п = 4 simulation for $[HO{MLABe}_4C(O)CH=CH(CO_2CH_2Ph)]Na^+, \ {}^{12}C_{55}{}^{1}H_{50}{}^{16}O_{20}{}^{3}Na_1, \ m/z = 1053.2 \ g.mol^{-1}).$ The minor populations correspond to $[M]\cdot K^+, \ m/z \ +16 \ g.mol^{-1}, \ [M]\cdot Na^+-CH_2Ph \ , \ m/z \ -91$ g.mol⁻¹ and [M]·K⁺–CH₂Ph: m/z +16 – 91 g.mol⁻¹.

Figure S14. ¹H NMR (400 MHz, CDCl₃, 25 °C) spectrum of an α -TBD- ω -crotonate PHB sample left in the presence of wet methanol for 1 h at 23 °C ($M_{n, SEC} = 7200 \text{ g.mol}^{-1}$, $D_M = 1.25$).

Figure S15. ¹H NMR (500 MHz, toluene- d_8) spectra of 1:1 TBD:BL (0.05 mol.L⁻¹) mixture at (bottom) 25 °C, (middle) 45 °C, and (top) 60 °C.

Figure S16. Detail of the region of the ¹H NMR (500 MHz, toluene- d_8 , 60 °C) spectra of PHB produced from BEMP, showing the evolution as a function of time of the signals of crotonic ($\delta = 5.69$ ppm) and methine ($\delta = 5.41$ ppm) hydrogens of PHB, and of the one corresponding to the N(CH₃)₃ hydrogens of BEMP ($\delta = 1.33$ ppm).

Figure S17. SEC traces of PHB produced from the ROP of BL mediated by TBD: (right) first loading of BL (113 equiv.; $M_{n,SEC} = 9800 \text{ g.mol}^{-1}$; $D_M = 1.17$), (left) second loading of BL (168 equiv.; $M_{nSEC} = 14500 \text{ g.mol}^{-1}$, $D_M = 1.25$).