Supporting Information

Gradient Copolymers of Styrene-Methyl Acrylate and Styrene-Acrylic Acid by Organostibine-mediated Controlled/Living Radical Polymerization and Their Glass Transition Behaviors

Jinping Zhang,^a Jun Li^{*},^aLiyan Huang, Zhengping Liu

^a Institute of Polymer Chemistry and Physics, Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. Fax: 86-10-58802075; Tel: 86-10-58806896; E-mail: jun@bnu.edu.cn

Table of Contents

1.	Preparation and characterization of poly(St-grad-MA) copolymer with	high
	molecular weight	P1
2.	Derivation of equation (1)	P3
3.	Proportion of MAMAMA sequence in MA units of gradient copolymers	
	calculated by ¹ H NMR spectra	P4
4.	¹ H NMR spectra of gradient copolymers at different reaction time	P5
5.	¹ H NMR spectra of hydrolysates and calculation of F _{cum}	P7
6.	DSC curves of copolymer	P9
7.	¹ H NMR spectrum of Poly(St-r-MA)	P10

Preparation and characterization of poly(St-grad-MA) copolymer with high molecular weight

Reaction Time (h)	$M_n^{\ b}$	PDI ^b	DP ^c	F_{cum} , St^d	$F_{cum,}MA^d$
12	11500	1.43	115	0.785	0.215
24	21800	1.25	220	0.729	0.271
30	28300	1.23	288	0.684	0.316
36	34000	1.19	348	0.647	0.353
47.2	39700	1.25	413	0.563	0.437

Table S1. Copolymerization data for the semi-batch SBRP poly(St-grad-MA)^a

^a The initial feeding molar ratio of St to St and MA ($f(St)_0$) was 50%; Total feeding amount of St and MA was 250 mmol; AIBN was 0.025 mmol; ethyl 2-dimethylstibanyl -2-methylpropionate was 0.5 mmol; MA adding rate was 0.004 mLmin⁻¹. ^b Measured by GPC (THF, 40 °C, flow rate 1 mL min⁻¹) against polystyrene standards. ^c calculated by Mn, F_{cum} ,St, F_{cum} ,MA and the molecule weight of St and MA. ^d F_{cum} ,St: St cumulative amount of the final polymer, calculated by ¹H NMR (please refer to the ESI, section (2)); F_{cum} ,MA=1- F_{cum} ,St.

Figure S1-1. GPC curves of poly(St-grad-MA) copolymers at different reaction time.

Figure S1-2. ¹H NMR spectra of poly(St-grad-MA) copolymers at different reaction time.

Figure S1-3. Cumulative composition of poly(St-grad-MA) versus the degree of polymerization.

Figure S1-4. Instantaneous composition of poly(St-grad-MA) versus the degree of polymerization.

Figure S1-5. DSC curves for poly(St-grad-MA) (heating method: 10k min⁻¹). $T_g: 59.3 \ ^{\circ}C; T_g$ Breadth: 60.7 $\ ^{\circ}C$ (onset: 15.1 $\ ^{\circ}C$, endset: 75.8 $\ ^{\circ}C$)

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

2. Derivation of equation (1)
$$F_{cum}$$
, $St = \frac{6A_1}{3A_1 + 5A_2}$

Figure S2. ¹H NMR spectra of poly(St-grad-MA) copolymers.

In the ¹H NMR spectra:

(1) Signals of 6.6~7.3 ppm assign to the 5 aromatic protons from St units. The peak area is A₁;
(2) Signals of 0.8~3.7 ppm assign to the 9 aliphatic protons, 3 from St units and 6 from MA units. The peak area is A₂.

Thus, the molar ratio of St/MA incorporated in the resulting copolymer is:

$$\frac{m}{n} = \frac{\frac{A_1}{5}}{\frac{(A_2 - 3 \times \frac{A_1}{5})}{6}} = \frac{6A_1}{5A_2 - 3A_1}$$

And then, the cumulative composition of St (F_{cum}, St) can be calculated as:

$$F_{cum}, St = \frac{m}{m+n} = \frac{6A_1}{3A_1 + 5A_2}$$

3. Proportion of MAMAMA sequence in MA units of gradient copolymers calculated by ¹H NMR spectra

Figure S3. ¹H NMR spectra of poly(St-grad-MA) and Poly(St-r-MA) copolymers.

The signals of $-CH_3$ at 3.66~3.52, 3.49~3.38 and 3.30~3.18 ppm can respectively be assigned to the MA-centered triads of MAMAMA, MAMASt and StMASt. Thus, the proportion of

MAMAMA sequences in the whole MA units ($\overline{F}(MAMAMA)$) were calculated by the ratio of the

peak areas of MAMAMA sequences at 3.66~3.52 ppm to the whole peak areas of MA units at 3.66~3.18 ppm. The calculated data is listed in Table S3. The proportion of MAMAMA in Grad5 is much higher than that in the poly(St-r-MA) with similar F_{cum} ,MA. The ¹H NMR spectra comparisons of the copolymers with other compositions give the same result.

Sample	F _{cum} ,MA ^a	$\overline{F}(MAMAMA)^{b}$
Grad1	0.895	0.787
Grad2	0.805	0.694
Grad3	0.699	0.571
Grad4	0.579	0.398
Grad5	0.486	0.278
Poly(St-r-MA)	0.479	0.150
Grad7	0.292	0.096

Table S3. Calculated $\overline{F}(MAMAMA)$.

^a See Table 2 in the article. ^b ¹H NMR spectra for different compositions of poly(St-r-MA) were reported in: (*a*) *M*. *A. Semsarzadeh and M. Abdollahi*, *J. Appl. Polym. Sci.*, 2009, 114, 2509-2521. (*b*) (*K. karaky, E.Pere, C.Pouchan, H. Garay, A. Khoukh, J. Francois, J. Desbrieres, L. Billon, New J. Chem.*, 2006, 30, 698-705). (c) *G. Van Doremaele, A. L. German, N. De Vries and G. Van der Velden, Macromolecules*, 1990, 23, 4206-4215.

Figure S4-1. ¹H NMR spectra of Grad1 at different reaction time

Figure S4-2. ¹H NMR spectra of Grad3 at different reaction time

Figure S4-3. ¹H NMR spectra of Grad5 at different reaction time

Figure S4-4. ¹H NMR spectra of Grad7 at different reaction time

5. ¹H NMR spectra of hydrolysates and calculation of F_{cum}

Figure S5-1. Original ¹H NMR spectra of hydrolysates (Grad3' in acetone-d6)

Take Grad3' for the example: the signals of 3.0~3.7 ppm assign to the protons of $-CH_3$, the peak area is A₁. The signals of 6.6~7.3 ppm assign to the protons of benzene rings , the peak area is A₂, then:

$$\frac{F_{cum}, MA}{F_{cum}, St} = \frac{\frac{A_1}{3}}{\frac{A_2}{5}} = \frac{5A_1}{3A_2}$$

Then, F_{cum} , $MA = \frac{5A_1}{3A_2} \times F_{cum}$, St

$$F_{cum}, AA = 1 - F_{cum}, St - F_{cum}, MA$$

For Grad3', F_{cum},St=0.301, A₁=0.27, A₂=5

Then,
$$F_{cum}, MA = \frac{5 \times 0.27}{3 \times 5} \times 0.301 = 0.027$$
; and $F_{cum}, AA = 1 - 0.301 - 0.027 = 0.672$

Figure S5-2. ¹H NMR spectra of all hydrolysates

Table S5.	Calculated	F _{cum} of h	ydrolysates
-----------	------------	-----------------------	-------------

	F _{cum} ,St	F _{cum} ,MA	F _{cum,} AA
Grad1'	0.105	0.041	0.854
Grad2'	0.195	0.057	0.748
Grad3'	0.301	0.027	0.672
Grad4'	0.421	0.038	0.541
Grad5'	0.514	0.033	0.453
Grad7'	0.708	0.057	0.235

6. DSC curves of copolymers

Figure S6-1. DSC curves of poly(St-grad-MA) and poly(St-r-MA) (heating method: 10k min⁻¹).

Figure S6-2. DSC curves of poly(St-grad-AA) (heating method: 10k min⁻¹).

Figure S6-3. Example of original Spectrum (Grad1)

7. ¹H NMR spectrum of Poly(St-r-MA)

 F_{cum} , St=0.521, F_{cum} , MA=0.479, T_g =49.4 °C, T_g breadth=14.6 °C