SUPPORTING INFORMATION

belonging to the paper:

Exploration of the effect of BHT in chain shuttling polymerization

Camille Descour, Timo J. J. Sciarone, Dario Cavallo, Tibor Macko, Mauritz Kelchtermans, Ilia

Korobkov, Robbert Duchateau

Table S1. Chain Shuttling Polymerization semi-batch experiments, at low 1-C ₈ ⁼ loading (10 mL unless stated otherwise).										
Entry	Catalysts	Monomers	MAO	BHT	ZnEt ₂	Yield (g)	M_n (g/mol)	PDI	$T_{\rm m}(^{\rm o}{\rm C})$	
MAO only										
S 1	Hf/Zr	$C_2^{=} + C_8^{=}$	1000eq	/	/	5.2	4.680	1.5	123.7	
S2	Hf/Zr	$C_{2}^{=} + C_{8}^{=}$	500eq	/	/	8.6	10.100	1.9	127.2	
S 3	Hf/Zr	$C_2^{=} + C_8^{=}$	250eq	/	/	8.6	33.800	2.6	129.8	
	MAO + BHT									
S4	Hf/Zr	$C_{2}^{=} + C_{8}^{=}$	500eq	500 eq	/	3.1	133.400	2.0	130.2	
S5	Hf/Zr	$C_2^{=} + C_8^{=}$	500eq	250 eq	/	3.3	121.500	2.0	128.6	
S 6	Hf/Zr	$C_2^{=} + C_8^{=}$	500eq	50 eq	/	9.0	51.900	2.6	130.0	
S 7	Hf/Zr	$C_2^{=} + C_8^{=}$ (50mL)	500eq	250 eq	/	4.1	139.600	2.9	118.9	
S 8	Hf/Zr	$C_2^{=} + C_8^{=} (100 \text{mL})$	500eq	250 eq	/	2.7	82.200	2.2	110.1	
MAO + (BHT) + DEZ										
S 9	Hf/Zr	$C_2^{=} + C_8^{=}$	500eq	/	50 eq	6.8	10.100	1.7	128.0	
S10	Hf/Zr	$C_2^{=} + C_8^{=}$	500eq	250 eq	50 eq	6.3	12.200	1.6	129.7	

Conditions: 5 µmol each catalyst, 11 µmol DMAHBF20, unless stated otherwise, 500 mL IsoparE. 1L PREMEX reactor, 130 °C and 30 min run. 5 bars ethylene.

NB: Experimentally, it does not make a difference to add MAO/BHT together or first MAO for 1h (to scavenge) and then only BHT.

Table S2. Chain Shuttling Polymerization semi-batch experiments, use of different scavengers.

Entry	Catalysts	Monomers	Scavenger	BHT	ZnEt ₂	Yield (g)	M _n (g/mol)	PDI	$T_{\rm m}$ (°C)
12114	Hf/Zr 3/1	$C_2^{=} + C_8^{=}$	MMAO-3A	250 eq	/	22.1	22.900	3.3	110.5
12115	Hf/Zr 3/1	$C_2^{=} + C_8^{=}$	MMAO-3A	250 eq.	10 eq.	21.3	4.700	1.7	111.8
1237	Hf/Zr	$C_2^{=} + C_8^{=}$	D 500 eq	250 eq	/	10.4	49.600	3.3	115.8
1232	Hf/Zr	$C_2^{=} + C_8^{=}$	D 500 eq	250 eq	10 eq	16.0	16.500	2.3	119.3
1246	Hf/Zr	$C_2^{=} + C_8^{=}$	D 500 eq	50 eq	10 eq	23.1	9.800	1.9	112.9 sh
1224	Hf/Zr	$C_{2}^{=} + C_{2}^{=}$	D 500 eq	/	10 ea	30.8	5.300	2.1	114.7

Conditions: 5 µmol each catalyst, unless stated otherwise, 11 µmol DMAHBF20, 500 mL IsoparE. 1L PREMEX reactor, 130 °C and 30 min run. 5 bars ethylene. 100 mL 1-octene, unless stated otherwise.

Entry	Cat.	Ratio	внт	ZnEt ₂	Yield (g)	M _n ^a (g/mol)	PDI	<i>T</i> _m (°C)	$\Delta H (J/g)$	Density	1-C ₈ ⁼ mol (wt) %	C.I.°	
2	Zr		/	/	22.5	10.100	2.1	116.1	133.9	0.934	3.47 (12.56)	8.85	
4	Hf		/	/	7.3	3.700	3.6	/	/	n.d.	27.39 (60.15)	5.60	
13	Hf		250 eq	/	2.6	72.700	9.9	120.5	9.5	0.899	24.95 (57.08)	7.14	
5	Hf/Zr		/	/	22.3	10.900	2.2	116.0	120.6	0.933	4.78 (16.71)	27.61	
7	Hf/Zr		250 eq	/	13.5	59.600	3.3	116.4	105.3	0.934	3.26 (11.89)	43.29	
17	Hf/Zr		250 eq	10 eq	17.1	15.700	2.1	119.1	124.4	0.937	2.31 (8.64)	16.67	
18	Hf/Zr	5/1	250 eq	/	5.70	66.500	5.8	114.5	50.2	0.907	11.62 (34.47)	16.04	

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

	Xylene insoluble		0.61	58.900	3.3	114.3	61.5	n.d.	7.21 (23.72)	20.08
	Xylene soluble		0.40	28.400	1.8	/	/	n.d.	36.29 (69.50)	6.40
19	Hf/Zr 3/1 250 eq	/	5.11	36.500	4.5	113.4	38.2	0.912	9.81 (30.31)	20.64
	Xylene insoluble		1.10	46.700	3.8	113.5	94.1	0.934	4.02 (14.33)	28.30
	Xylene soluble		0.43	29.800	8.9	/	/	n.d.	38.54 (71.50)	7.43
20	Hf/Zr 3/1 250 eq	10 eq	6.85	9.900	1.9	120.8	135.5	0.940	1.72 (6.56)	39.22

Conditions: polymerization conditions: 500 mL Isopar E, 100 mL $1-C_8^{=}$, 500 eq MAO, TBF₂₀: 11 µmol; catalyst: 10 µmol; ethylene 5 bar, 130 °C, 30 min.

Figure S1. Overlay of HT HPLC chromatograms for standard materials used in Darmstadt (kindly provided by Dr. T. Macko).

Figure S2. HT SEC plot of entry 7.

	4	5
formula	$C_{32}H_{51}AlO_2$	$C_{34}H_{56}O_2Zn_2$
FW	494.71	627.57
cryst. dim. (mm)	0.33 x 0.30 x 0.26	0.44 x 0.37 x 0.33
colour, habit	colorless, block	colorless, block
crystal system	triclinic	orthorhombic
Space group, no. ⁱ	P-1, 2	Pbca, 61
a (Å)	10.9975(11)	17.7224(11)
<i>b</i> (Å)	12.3835(11)	9.6794(6)
<i>c</i> (Å)	13.3184(12)	19.2480(11)
α (°)	65.237(4)	90
β (°)	75.393(4)	90
γ (°)	69.574(4)	90
Ζ	2	4
$V(Å^3)$	1531.4(3)	3301.8(3)
$\rho_{\rm calc} ({\rm g/cm^3})$	1.0729(2)	1.2625(1)
θ range (°)	2.33-28.29	3.12-28.29
λ (Å) (Mo- K_{α})	0.71073	0.71073
$T(\mathbf{K})$	200(2)	200(2)

	#	24101	59012
	# meas. refl.	24101	58913
	# unique refl.	7448	4048
	# param.	316	172
	weighting scheme; a,b ^[a]	0.1028, 0.5326	0.0420, 2.5700
	$R(F)$ for $F_0 \ge 4\sigma(F_0)^{[b]}$	0.553	0.0289
	$wR(F^2)^{[c]}$	0.1718	0.0827
	GoF ^[d]	1.019	1.002
[a] $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP], P = [a]$	$\max(F_o^2, 0) + 2F_c^2] / 3 [b] R(a)$	$F) = \sum \left(F_o - F_c \right) / \sum$	$\sum F_o [c] wR(F^2) = \left[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]\right]^{1/2} [d]$
GoF = $\left[\sum [w(F_o^2 - F_c^2)^2] / (n-p)\right]^{\frac{1}{2}}, n$	= # refl., p = # param. refine	ed.	

^{*i*} International Tables for Crystallography; Kluwer Academic Publishers; Dordrecht, The Netherlands, 1992.