Supporting Information

Protected N-Heterocyclic Carbenes as Latent Pre-Catalysts

for the Polymerization of ϵ -Caprolactone

Stefan Naumann, Friedrich Georg Schmidt, Wolfgang Frey and Michael R. Buchmeiser*

Figure S1. ¹H-NMR of 6-OMe-CO₂ (CD₂Cl₂, RT).

Figure S2: Latent behavior of $5s-Mes-MgCl_2$ at room temperature and following treatment at 130°C.

 $[NHC]:[Bn-OH]:[\epsilon-CL] = 1:2:280.$

Figure S3. MALDI-TOF of PCL by the action of **5s-tBu-CO**₂/Bn-OH at 70°C. Found: Rep. unit 114.068, end1 107.050, end2 1.00783, cation 22.9898, M_n 3396.86, M_w 3561.55, pd 1.04848, DP 29.78, resid. -0.31296.

Figure S4: Plot of $ln(c_0/c_1)$ vs. time. At high conversions, deviations from the linear behavior occur (blue triangles; omitted for the red triangles). **5s-Mes-ZnCl**₂ shows a distinct induction period. [NHC]:[Bn-OH]:[ϵ -CL] = 1:2:280.

Table S1. Crystal data and structure refinement for 5s-Mes-ZnCl₂.

Empirical formula	$C_{27} H_{38} Cl_2 N_2 O_{1.50} Zn$
Formula weight	550.86
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C 2/c
Unit cell dimensions a = 29	.535(4) A alpha = 90 °. b = 11.9480(14) A beta = 96.899(7) °. c = 15.3350(17) A gamma = 90 °.
Volume	5372.3(11) A^3
Z, Calculated density	8, 1.362 g/cm ³
Absorption coefficient	1.137 mm ⁻¹
F(000)	2320
Crystal size	0.36 x 0.11 x 0.06 mm
O range for data collection	1.84 to 26.43 °.
Limiting indices	-36<=h<=25, -14<=k<=13, -19<=l<=19
Reflections collected / unique	19082 / 5360 [R(int) = 0.0733]
Completeness to $\Theta = 26.43$	97.2 %
Absorption correction	Numerical
Max. and min. transmission	0.9859 and 0.8765
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5360 / 0 / 309
Goodness-of-fit on F ² 1.014	
Final R indices [I>2o(I)]	R1 = 0.0481, wR2 = 0.0639
R indices (all data)	R1 = 0.1076, wR2 = 0.0710
Largest diff. peak and hole	0.421 and -0.385 e.A ⁻³

	x	У	Z	U(eq)	
$\begin{array}{c} Zn(1)\\ Cl(1)\\ Cl(2)\\ N(1)\\ C(1)\\ N(2)\\ C(2)\\ C(3)\\ C(4)\\ C(5)\\ C(6)\\ C(7)\\ C(8)\\ C(9)\\ C(10)\\ C(11)\\ C(12)\\ C(10)\\ C(11)\\ C(12)\\ C(13)\\ C(14)\\ C(15)\\ C(16)\\ C(17)\\ C(18)\\ C(17)\\ C(18)\\ C(19)\\ C(20)\\ C(21)\\ O(1)\\ C(22)\\ C(23)\\ \end{array}$	x 1460(1) 2021(1) 887(1) 1287(1) 1269(1) 1117(1) 1098(1) 1045(1) 1045(1) 1095(1) 1474(1) 1785(1) 1725(1) 581(1) 1545(1) 2070(1) 1009(1) 1334(1) 1200(1) 761(1) 447(1) 564(1) 1812(1) 617(1) 219(1) 1790(1) 2267(1) 2382(1)	y 3523(1) 4425(1) 3050(1) 3590(2) 4112(2) 5145(2) 4275(2) 5415(2) 2401(2) 1685(2) 540(3) 105(2) 846(2) 2002(2) 2102(2) 2102(2) -1145(2) 2791(2) 5967(2) 6752(2) 7588(2) 7666(2) 6855(2) 5995(2) 6704(2) 8628(2) 5125(2) 1990(2) 1948(2) 717(2)	z 875(1) 298(1) -148(1) 2807(1) 2024(2) 2123(1) 3482(2) 3038(2) 2921(2) 2509(2) 2591(2) 3091(2) 3536(2) 3455(2) 1997(2) 3163(2) 3929(2) 1437(2) 1264(2) 656(2) 240(2) 420(2) 1016(2) 1725(2) -374(2) 1191(2) 1154(1) 1490(2) 1614(2)	U(eq) 14(1) 24(1) 21(1) 12(1) 12(1) 12(1) 12(1) 16(1) 16(1) 16(1) 16(1) 13(1) 20(1) 23(1) 21(1) 12(1) 13(1) 15(1) 14(1) 20(1) 24(1) 17(1) 14(1) 21(1) 18(1)	
C(23) C(24) C(25) O(1S) C(1S) C(2S)	2382(1) 1999(1) 1720(1) 0 -168(1) -200(1)	717(2) 113(2) 1042(2) -298(2) -993(3) -2159(2)	1614(2) 1034(2) 576(2) 2500 1772(2) 2144(2)	18(1) 20(1) 28(1) 30(1) 28(1) 18(1)	

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for **5s-Mes-ZnCl**₂. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Zn(1)-C(1) $Zn(1)-O(1)$ $Zn(1)-Cl(2)$ $Zn(1)-Cl(1)$ $N(1)-C(1)$ $N(1)-C(4)$ $N(1)-C(2)$ $C(1)-N(2)$ $N(2)-C(13)$ $N(2)-C(3)$ $C(2)-C(3)$ $C(2)-C(3)$ $C(2)-H(2A)$ $C(2)-H(2B)$ $C(3)-H(2B)$ $C(3)-H(3B)$ $C(3)-H(3B)$ $C(4)-C(9)$ $C(4)-C(5)$ $C(5)-C(6)$	2.040(3) 2.0955(19) 2.2381(9) 2.2451(9) 1.347(3) 1.440(4) 1.481(3) 1.328(3) 1.447(3) 1.480(3) 1.522(4) 0.9900 0.9900 0.9900 0.9900 1.389(4) 1.392(4) 1.391(4)
C(3)-C(10) $C(6)-C(7)$ $C(6)-H(6)$ $C(7)-C(8)$ $C(7)-C(11)$ $C(8)-C(9)$ $C(8)-H(8)$ $C(9)-C(12)$ $C(10)-H(10A)$ $C(10)-H(10B)$ $C(10)-H(10C)$ $C(11)-H(11B)$ $C(11)-H(11B)$ $C(11)-H(11B)$ $C(11)-H(11C)$ $C(12)-H(12A)$ $C(12)-H(12B)$ $C(12)-H(12B)$ $C(12)-H(12C)$ $C(13)-C(14)$ $C(13)-C(18)$ $C(14)-C(15)$	1.300(4) 1.378(4) 0.9500 1.394(4) 1.511(4) 1.396(4) 0.9500 1.509(4) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.390(4) 1.392(4) 1.391(4)
C(14)-C(19) C(15)-C(16) C(15)-H(15) C(16)-C(17) C(16)-C(20) C(17)-C(18) C(17)-H(17) C(18)-C(21) C(19)-H(19A) C(19)-H(19B) C(19)-H(19B) C(19)-H(19C) C(20)-H(20A) C(20)-H(20B) C(20)-H(20C) C(21)-H(21A)	1.503(4) 1.377(4) 0.9500 1.392(4) 1.514(4) 1.390(4) 0.9500 1.502(4) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800

Table S3.	Bond lengths	[A] and angles	s [°] for 5s-M	es-ZnCl ₂ .
	0			_

C(21)-H(21B) C(21)-H(21C) O(1)-C(25) O(1)-C(22) C(22)-C(23) C(22)-H(22A) C(22)-H(22B) C(23)-C(24) C(23)-H(23A) C(23)-H(23B) C(24)-C(25) C(24)-H(24A) C(24)-H(24A) C(25)-H(25A) C(25)-H(25B) O(1S)-C(1S) O(1S)-C(1S) O(1S)-C(1S)#1 C(1S)-H(1S1) C(1S)-H(1S1) C(2S)-H(2S1) C(2S)-H(2S2)	0.9800 0.9800 1.437(3) 1.440(3) 1.517(4) 0.9900 0.9900 1.532(4) 0.9900 0.9900 1.506(4) 0.9900 0.9900 0.9900 1.432(3) 1.432(3) 1.512(4) 0.9900 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
$\begin{array}{c} C(1)-Zn(1)-O(1)\\ C(1)-Zn(1)-Cl(2)\\ O(1)-Zn(1)-Cl(2)\\ C(1)-Zn(1)-Cl(1)\\ O(1)-Zn(1)-Cl(1)\\ O(1)-Zn(1)-Cl(1)\\ C(2)-Zn(1)-Cl(1)\\ C(1)-N(1)-C(2)\\ C(4)-N(1)-C(2)\\ C(4)-N(1)-C(2)\\ C(4)-N(1)-C(2)\\ N(2)-C(1)-Zn(1)\\ N(1)-C(1)-Zn(1)\\ N(1)-C(1)-Zn(1)\\ C(1)-N(2)-C(3)\\ C(1)-N(2)-C(3)\\ C(1)-N(2)-C(3)\\ C(1)-N(2)-C(3)\\ N(1)-C(2)-H(2A)\\ C(3)-C(2)-H(2A)\\ N(1)-C(2)-H(2B)\\ C(3)-C(2)-H(2B)\\ H(2A)-C(2)-H(2B)\\ H(2A)-C(2)-H(2B)\\ H(2A)-C(2)-H(2B)\\ N(2)-C(3)-H(2B)\\ N(2)-C(3)-H(3A)\\ C(2)-C(3)-H(3B)\\ C(3)-C(2)-H(2B)\\ C(3)-C(3)-H(3B)\\ C(2)-C(3)-H(3B)\\ C(2)-C(3)-H(3B)\\ C(2)-C(3)-H(3B)\\ C(2)-C(3)-H(3B)\\ C(2)-C(3)-H(3B)\\ C(3)-C(4)-N(1)\\ C(5)-C(4)-N(1)\\ C(5)-C(4)-N(1)\\ C(6)-C(5)-C(4)\\ C(6)-C(5)-C(10)\\ \end{array}$	$\begin{array}{c} 107.18(9)\\ 115.36(9)\\ 102.52(6)\\ 117.99(8)\\ 98.80(6)\\ 112.10(3)\\ 123.8(2)\\ 112.9(2)\\ 120.7(2)\\ 107.8(2)\\ 123.47(19)\\ 128.6(2)\\ 126.6(2)\\ 113.6(2)\\ 119.8(2)\\ 102.1(2)\\ 111.4\\ 111.4\\ 111.4\\ 111.4\\ 111.4\\ 111.4\\ 109.2\\ 102.1(2)\\ 111.3\\ $

C(4)-C(5)-C(10)	122.7(3)
C(7)-C(6)-C(5)	122.5(3)
C(7)-C(6)-H(6)	118.7
C(5)-C(6)-H(6)	118.7
C(6)-C(7)-C(8)	118.4(3)
C(6)-C(7)-C(11)	120.6(3)
C(8)-C(7)-C(11)	121.0(3)
C(7)-C(8)-C(9)	121.1(3)
C(7)-C(8)-H(8)	119.4
C(9)-C(8)-H(8)	119.4
C(4)-C(9)-C(8)	118.4(3)
C(4)-C(9)-C(12)	121.3(3)
C(8)-C(9)-C(12)	120.3(3)
C(5)-C(10)-H(10A)	109.5
C(5)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(5)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(7)-C(11)-H(11A)	109.5
C(7)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(7)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-C(18)	121.9(3)
C(14)-C(13)-N(2)	120.0(3)
C(18)-C(13)-N(2)	117.9(3)
C(13)-C(14)-C(15)	117.8(3)
C(13)-C(14)-C(19)	121.0(3)
C(15)-C(14)-C(19)	121.2(3)
C(16)-C(15)-C(14)	122.3(3)
C(16)-C(15)-H(15)	118.8
C(14)-C(15)-H(15)	118.8
C(15)-C(16)-C(17)	118.3(3)
C(15)-C(16)-C(20)	121.2(3)
C(17)-C(16)-C(20)	120.4(3)
C(18)-C(17)-C(16)	121.7(3)
C(18)-C(17)-H(17)	119.2
C(16)-C(17)-H(17)	119.2
C(17)-C(18)-C(13)	118.0(3)
C(17)-C(18)-C(21)	120.5(3)
C(13)-C(18)-C(21)	121.5(3)
C(14)-C(19)-H(19A)	109.5
C(14)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(14)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(16)-C(20)-H(20A)	109.5

109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 $104.9(2)$ $122.21(17)$ $120.92(16)$ $105.8(2)$ 110.6 110.6 110.6 110.6 108.7
109.5 109.5 104.9(2) 122.21(17) 120.92(16) 105.8(2) 110.6
110.6 110.6 110.6 108.7 104.2(2) 110.9 110.9
110.9 110.9 108.9 104.3(2) 110.9 110.9
110.9 110.9 108.9 105.2(2) 110.7 110.7
110.7 110.7 108.8 109.0(3) 105.8(2) 110.6 110.6
110.6 110.6 108.7 101.1(2) 111.5 111.5 111.5 111.5 109.4

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2

	U11	U22	U33	U23	U13	U12	
Zn(1)	16(1)	15(1)	11(1)	0(1)	3(1)	2(1)	
CI(1)	29(1)	20(1)	26(1)	2(1)	14(1)	-2(1)	
CI(2)	21(1)	29(1)	13(1)	0(1)	-1(1)	2(1)	
N(1)	15(2)	10(2)	10(1)	-1(1)	3(1)	2(1)	
C(1)	7(2)	13(2)	15(2)	4(1)	-1(1)	-3(1)	
N(2)	16(2)	12(2)	7(1)	1(1)	3(1)	4(1)	
C(2)	21(2)	17(2)	12(2)	1(1)	6(1)	8(2)	
C(3)	21(2)	17(2)	12(2)	-2(1)	5(1)	4(2)	
C(4)	15(2)	10(2)	10(1)	2(1)	6(1)	4(2)	
C(5)	14(2)	15(2)	11(1)	4(1)	5(1)	1(2)	
C(6)	22(2)	18(2)	12(2)	0(1)	6(2)	-4(2)	
C(7)	23(2)	16(2)	11(2)	1(1)	11(2)	-1(2)	
C(8)	17(2)	20(2)	11(2)	4(1)	4(1)	9(2)	
C(9)	14(2)	15(2)	9(2)	-1(1)	3(1)	2(2)	
C(10)	17(2)	21(2)	21(2)	5(1)	-1(2)	-5(2)	
C(11)	37(2)	13(2)	20(2)	-1(1)	5(2)	6(2)	
C(12)	17(2)	25(2)	19(2)	-1(1)	-2(2)	5(2)	
C(13)	18(2)	9(2)	8(1)	1(1)	3(1)	3(2)	
C(14)	14(2)	10(2)	15(2)	-5(1)	3(1)	2(2)	
C(15)	21(2)	12(2)	14(2)	-1(1)	7(2)	-3(2)	
C(16)	21(2)	12(2)	12(2)	-1(1)	4(2)	2(2)	
C(17)	14(2)	16(2)	12(2)	-4(1)	-1(1)	3(2)	
C(18)	17(2)	8(2)	13(2)	-2(1)	9(1)	0(2)	
C(19)	17(2)	18(2)	26(2)	-3(1)	4(2)	3(2)	
C(20)	27(2)	20(2)	23(2)	8(2)	2(2)	2(2)	
C(21)	17(2)	17(2)	19(2)	1(1)	5(1)	1(2)	
O(1)	12(1)	13(1)	18(1)	-3(1)	1(1)	1(1)	
C(22)	12(2)	19(2)	30(2)	-2(2)	-1(2)	0(2)	
C(23)	16(2)	20(2)	17(2)	-1(1)	5(1)	3(2)	
C(24)	23(2)	17(2)	21(2)	-3(2)	2(2)	1(2)	
C(25)	36(2)	20(2)	25(2)	-11(2)	-9(2)	2(2)	
O(1S)	29(2)	10(2)	51(2)	0	5(2)	0	
C(1S)	26(2)	33(2)	26(2)	8(2)	10(2)	6(2)	
C(2S)	20(2)	17(2)	17(2)	-3(1)	2(2)	3(2)	

Table S4. Anisotropic displacement parameters ($A^2 \times 10^3$) for **5s-Mes-ZnCl**₂. The anisotropic displacement factor exponent takes the form: -2 π^2 [h^2 a*2 U¹¹ + ... + 2 h k a* b* U₁₂]

	x	У	Z	U(eq)	
H(2A)	1310	4310	4032	20	
H(2B)	800	3980	3613	20	
H(3A)	/3/	5729	3068	19	
H(3B)	1277	5951	3307	19	
H(6)	881	38	2291	20	
H(8)	2041	560	3900	19	
H(10A)	481	2782	2274	29	
H(10B)	345	1525	1992	29	
H(10C)	636	2269	1393	29	
H(11A)	1362	-1450	3599	35	
H(11B)	1868	-1304	3344	35	
H(11C)	1451	-1494	2591	35	
	2100	3341	3512	31	
	2337	2300	4180	31	
H(12C)	1934	3179	4395	31	
H(15)	1419	6125	524	18	
H(17)	145	6889	128	17	
	1802	0090	2300	30	
	1970	7400	1020	30	
	1975	0078	1492	30	
	473	9211	-01	30	
	390 005	0000	-000	30	
$\Pi(20C)$	000	0930 5242	-007	30	
П(ZTA) Ц(21В)	-01	5066	900	20	
	200	3000	1020	20	
$\Pi(210)$	307	4401 2252	902 2056	20	
	2323	2002	2050	25	
$\Pi(ZZD)$	2404	2293	1000	20	
H(23R)	2300	495 547	1/22	21	
$\Pi(23D)$ $\Pi(24A)$	2003	270	602	21	
H(24A)	2120	-379	1204	25	
H(24D)	1872	-340 1210	0	20	
H(25R)	1302	1210 835	183	33	
H(1S1)	1393	-082	400 1210	33	
H(101) H(102)	43 _179	-30∠ _720	1510	33 22	
H(2S1)	-412 _102	-132 -2272	2380	33 22	
H(2S2)	- 1 32 -167	-2213	1605	22	
1 (202)	-107	-2133	1035	22	

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A² x 10^3) for **5s-Mes-ZnCl₂**.

Table S6. Torsion angles [°] for $5s\text{-}Mes\text{-}ZnCl_2.$

C(4) N(4) C(4) N(2)	467 0(0)
C(4) - N(1) - C(1) - N(2)	167.0(2)
C(2)-N(1)-C(1)-N(2)	5.2(3)
C(4)-N(1)-C(1)-Zn(1)	-15.7(4)
C(2) - N(1) - C(1) - Zn(1)	-177 5(2)
O(2) = N(1) = O(1) = Z H(1)	100.7(2)
O(1) - Zn(1) - O(1) - N(2)	168.7(2)
Cl(2)-Zn(1)-C(1)-N(2)	-77.9(2)
Cl(1)-Zn(1)-C(1)-N(2)	58.5(3)
O(1) - Zn(1) - C(1) - N(1)	-8 1(3)
$C(2)$ $Z_{n}(1)$ $C(1)$ $N(1)$	105 2(2)
$O(4) = Z_{1}(1) + O(1) + N(1)$	100.0(0)
CI(1) - Zn(1) - C(1) - N(1)	-118.4(2)
N(1)-C(1)-N(2)-C(13)	-174.4(3)
Zn(1)-C(1)-N(2)-C(13)	8.1(4)
N(1) - C(1) - N(2) - C(3)	34(3)
$Z_{n}(1) - C(1) - N(2) - C(3)$	-1740(2)
2(4) N(4) Q(2) Q(3)	-174.0(2)
C(1)-IN(1)-C(2)-C(3)	-11.0(3)
C(4)-N(1)-C(2)-C(3)	-173.4(2)
C(1)-N(2)-C(3)-C(2)	-10.0(3)
C(13)-N(2)-C(3)-C(2)	168.0(3)
N(1)-C(2)-C(3)-N(2)	11 6(3)
C(1) N(1) C(4) C(0)	110.2(2)
C(1)-IN(1)-C(4)-C(9)	119.3(3)
C(2)-N(1)-C(4)-C(9)	-80.2(3)
C(1)-N(1)-C(4)-C(5)	-62.2(4)
C(2)-N(1)-C(4)-C(5)	98.2(3)
C(9) - C(4) - C(5) - C(6)	-5 1(4)
N(1) - C(4) - C(5) - C(6)	176 5(2)
$(1)^{-}C(4)^{-}C(5)^{-}C(0)$	170.5(2)
C(9)-C(4)-C(5)-C(10)	174.1(3)
N(1)-C(4)-C(5)-C(10)	-4.3(4)
C(4)-C(5)-C(6)-C(7)	3.0(4)
C(10)-C(5)-C(6)-C(7)	-176.2(3)
C(5) - C(6) - C(7) - C(8)	0.6(4)
C(5) - C(6) - C(7) - C(11)	179 9(2)
C(0) - C(0) - C(1) - C(11)	(73.3(2))
C(6)-C(7)-C(8)-C(9)	-2.2(4)
C(11)-C(7)-C(8)-C(9)	178.5(3)
C(5)-C(4)-C(9)-C(8)	3.6(4)
N(1)-C(4)-C(9)-C(8)	-178.0(2)
C(5)-C(4)-C(9)-C(12)	-177.3(3)
N(1)-C(4)-C(9)-C(12)	1 1(4)
C(7) C(9) C(0) C(4)	0.2(4)
C(7) - C(0) - C(9) - C(4)	0.2(4)
C(7)- $C(8)$ - $C(9)$ - $C(12)$	-178.9(3)
C(1)-N(2)-C(13)-C(14)	-94.8(3)
C(3)-N(2)-C(13)-C(14)	87.5(3)
C(1) - N(2) - C(13) - C(18)	90.2(4)
C(3)-N(2)-C(13)-C(18)	-87 5(3)
C(19) = C(12) = C(13) = C(10)	-07.5(0)
C(10) - C(13) - C(14) - C(15)	0.7(4)
N(2)-C(13)-C(14)-C(15)	-174.1(2)
C(18)-C(13)-C(14)-C(19)	-179.8(3)
N(2)-C(13)-C(14)-C(19)	5.4(4)
C(13)-C(14)-C(15)-C(16)	0.9(4)
C(19)-C(14)-C(15)-C(16)	-178 5(3)
C(14) C(15) C(16) C(17)	1 0(4)
O(14) - O(13) - O(10) - O(17)	-1.3(4)
U(14)-U(15)-U(16)-U(20)	175.9(3)
C(15)-C(16)-C(17)-C(18)	1.3(4)
C(20)-C(16)-C(17)-C(18)	-176.6(3)

C(16)-C(17)-C(18)-C(13)	0.3(4)
C(16)-C(17)-C(18)-C(21)	-179.4(2)
C(14)-C(13)-C(18)-C(17)	-1.3(4)
N(2)-C(13)-C(18)-C(17)	173.6(2)
C(14)-C(13)-C(18)-C(21)	178.4(2)
N(2)-C(13)-C(18)-C(21)	-6.7(4)
C(1)-Zn(1)-O(1)-C(25)	139.2(2)
Cl(2)-Zn(1)-O(1)-C(25)	17.4(2)
Cl(1)-Zn(1)-O(1)-C(25)	-97.8(2)
C(1)-Zn(1)-O(1)-C(22)	-83.8(2)
Cl(2)-Zn(1)-O(1)-C(22)	154.33(18)
Cl(1)-Zn(1)-O(1)-C(22)	39.21(19)
C(25)-O(1)-C(22)-C(23)	-37.0(3)
Zn(1)-O(1)-C(22)-C(23)	179.70(16)
O(1)-C(22)-C(23)-C(24)	19.5(3)
C(22)-C(23)-C(24)-C(25)	4.2(3)
C(22)-O(1)-C(25)-C(24)	39.8(3)
Zn(1)-O(1)-C(25)-C(24)	-177.52(18)
C(23)-C(24)-C(25)-O(1)	-26.5(3)
C(1S)#1-O(1S)-C(1S)-C(2S)	13.16(15)
O(1S)-C(1S)-C(2S)-C(2S)#1	-33.8(3)

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2