SUPPORTING INFORMATION

for

Trivalent Cobalt Complex Mediated Formation of Stereoregular CO₂

Copolymer from Phenyl Glycidyl Ether

Wei-Min Ren, Meng-Wei Liang, Yue-Chao Xu and Xiao-Bing Lu*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road,

116024 Dalian, China

E-mail: <u>lxb-1999@163.com</u>

Contents

1. General information

2. Characterization of CO₂/phenyl glycidyl ether copolymers by ¹H NMR

3. Reaction rate data for CO₂/phenyl glycidyl ether coupling

4. Arrhenius plots for formation of polycarbonate and cyclic carbonate during CO₂/phenyl glycidyl ether coupling reactions

5. Determination of enantiomeric purity of the resultant CO₂/phenyl glycidyl ether copolymers

1. General information

NMR ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 MHz type (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer. Their peak frequencies were referenced versus an internal standard (TMS) shifts at 0 ppm for ¹H NMR and against the solvent, chloroform-*d* at 77.0 ppm for ¹³C NMR, respectively.

Gel Permeation Chromatography Molecular weights and molecular weight distributions of CO_2 copolymers were determined with a PL-GPC 220 high temperature chromatograph (Polymer Laboratories Ltd.) equipped with the HP 1100 series pump from Agilent Technologies. The GPC columns were eluted with tetrahydrofuran at 35 °C at 1.00 ml/min. The sample concentration was about 0.1%, and the injection volume was 100 μ L. The curve was calibrated using monodisperse polystyrene standards covering the molecular weight rage from 580 to 460000 Da.

Differential scanning calorimetry (DSC) The analysis of DSC was carried out with a NETZSCH DSC 206 thermal analyzer.

2. Characterization of CO_2 /phenyl glycidyl ether copolymers by ¹H NMR

Figure S1. ¹H NMR spectra of the reaction mixture sampled directly from the coupling of CO₂ and phenyl glycidyl ether catalyzed by (A) binary 1/MTBD system, and (B) single-component 3 under a [PGE]/[Catalyst] ratio of 2000 at ambient temperature.

Catalyst system	Temperature (K)	Rate ($abs/s \times 10^6$)	
		Copolymer	Cyclic carbonate
	293	1.54	2.57
Binary 1/PPNDNP (1/1)	303	2.49	1.23
	313	4.27	0.55
	323	6.64	0.16
Single-component 3	293	5.95	-
	303	8.32	0.17
	313	13.15	0.98
	323	18.02	2.01

3. Reaction rate data for CO₂/phenyl glycidyl ether coupling

^{*a*} The reactions were performed in neat phenyl glycidyl ether (PGE) (18.0 g, 120 mmol) at $1.5\sim2.0$ MPa CO₂ pressure. The molar ratio of catalyst to PGE was 2000/1.

4. Arrhenius plots for formation of polycarbonate and cyclic carbonate during

CO2/phenyl glycidyl ether coupling reactions

Figure S2. Arrhenius plots for formation of copolymer and cyclic carbonate during phenyl glycidyl ether/CO₂ copolymerization catalyzed by (A) the single-site catalyst 3, and (B) the binary catalyst system consisting of complex 1 and PPNDNP.

5. Determination of enantiomeric purity of the resultant CO₂/phenyl glycidyl ether

copolymers

The *ee* of the resulting copolymer (Table 2, entry 7) was determined by chiral HPLC analysis of the diol derivative from hydrolysis with 1M NaOH (OD-H, 8:2 hexane:*i*-PrOH, $t_R(minor) = 7.17$ min, $t_R(major) = 13.85$ min).

