Supporting Information for

Microstructure Analysis of Biocompatible Phosphoester-co-polymers

Tobias Steinbach,^{a,b,c} Romina Schröder,^a Sandra Ritz,^c Frederik R. Wurm^c

^aInstitute of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14,

55099 Mainz, Germany

^bGraduate School Material Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany

^cMax Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, wurm@mpip-

mainz.mpg.de

Contact address: wurm@mpip-mainz.mpg.de, phone: 0049 6131 379 723, fax: 0049 6131 370

330.

Fig. S2. ³¹P NMR spectrum of a) EEP and b) EMEP in DMSO- d_6 .

Fig. S3. ¹H NMR spectrum of EMEP in CDCl₃.

Fig. S4. ¹H NMR spectrum of P(EEP₁₇-*co*-EMEP₁₆) in DMSO-*d*₆.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is O The Royal Society of Chemistry 2013

Fig. S5. SEC chromatograms of a) P(EEP-*co*-EMEP) copolymers and b) PEMEP homopolymers (measured in DMF at 50 °C and a flow rate of 1.0 mL·min⁻¹). Periodic artifacts are due to highly diluted samples (1.0 mg·mL⁻¹, 100 μ L injected) and the high measuring sensitivity of the employed RI detector.

Fig. S6. Graphical representation of the measured $T_{\rm g}$ of all copolymers.

Fig. S7. Dyad analysis with all possible head-to-head (above) and tail-to-tail (bottom) configurations of PEMEP.

Fig. S8. ³¹P NMR of all copolymers. a) Magnification of the tail-to-tail region. b) Zoom in the region assigned to the EMEP_{α}-EMEP_{β} dyad.

Fig. S9. Tail-to-tail microstructures resulting in different chemical shifts in ³¹P NMR (compare to Fig. S8, ESI)

Fig. S10. ¹H³¹P HMBC spectra of five representative examples in DMSO-*d*₆: a) PEEP₃₂, b) P(EEP₂₈-*co*-EMEP₅); c) P(EEP₁₇-*co*-EMEP₁₆); d) P(EEP₄-*co*-EMEP₂₉); e) PEMEP₃₈.

Fig. S11. ¹H DOSY of five representative examples in DMSO- d_6 : a) PEEP₃₂, b) P(EEP₂₈-co-EMEP₅); c) P(EEP₁₇-co-EMEP₁₆); d) P(EEP₄-co-EMEP₂₉); e) PEMEP₃₈. The diffusion coefficient calculated by Bayesian DOSY Transformation is for all copolymers in the same range.

Fig. S12. Change in transmittance of PEMEP solutions with different molecular weights. Cloud points were determined in PBS pH 7.4 (10 mM) prepared from MilliQ water (18.2 m Ω) at a concentration of 10.0 mg·mL⁻¹. The heating/cooling rate was 1 °C·min⁻¹ and values were recorded every 0.1 °C.

Fig. S13. Change in transmittance of P(EEP-*co*-EMEP) copolymers at a concentration of 10 mg·mL⁻¹ in PBS pH 7.4 10 mM at 500 nm and a heating rate of 1° C·min⁻¹.