ESI

Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake

Wei-Chao Song, Xiao-Kang Xu, Qiang Chen, Zhan-Zhong Zhuang and Xian-He Bu*

Preparation of the APOPs

Synthesis of APOP-1

A 50 mL three-necked bottle flask fitted with a condenser and a magnetic stirring bar was charged with B1 (296 mg, 1 mmol), benzaldehyde (424 mg, 4 mmol) and dimethyl sulfoxide (25.0 mL). After degassing by argon bubbling, the mixture was heated to 180 °C for 72 h under an inert atomosphere. After thoroughly washing the obtained powder with MeOH, CH_2Cl_2 and THF, the solids were further Soxhlet extracted using CH_2Cl_2 and THF for 24 h, respectively, and dried under vacuum to afford the final APOP-1 in 66 % yield. Anal. calcd for $C_{26}H_{20}N_{10}$: C, 66.09; H, 4.27; N, 29.64. Found: C, 52.13; H, 4.21; N, 37.75 %.

Synthesis of APOP-1-OH

Similar to the preparation of APOP-1, B1 (296 mg, 1 mmol), 2-hydroxybenzaldehyde (488 mg, 4 mmol) were reacted in dimethyl sulfoxide (25.0 mL) at 180 °C for 72 h to afford APOP-1-OH in 71 % yield. Anal. calcd for $C_{26}H_{20}N_{10}O_2$: C, 61.90; H, 4.00; N, 27.76. Found: C, 55.44; H, 3.88; N, 37.19 %.

Synthesis of APOP-1-ONa

200 mg of APOP-1-OH was dispersed in 5 mL methanol, then 100 mg MeONa dissolved in 10 mL methanol was added to the dispersion and allowed to react for 2 h at room temperature. The dispersion was filtered and washed with methanol.

Synthesis of APOP-1-F

Similar to the preparation of APOP-1, B1 (296 mg, 1 mmol), 4-fluorobenzaldehyde (504 mg, 4 mmol) were reacted in dimethyl sulfoxide (25.0 mL) at 180 °C for 72 h to afford APOP-1-F in 68 % yield. Anal. calcd for $C_{26}H_{18}N_{10}F_2$: C, 61.41; H, 3.57; N, 27.55. Found: C, 50.53; H, 3.84; N, 40.12 %.

Synthesis of APOP-2

Similar to the preparation of APOP-1, B2 (372 mg, 1 mmol), benzaldehyde (424 mg, 4 mmol) were reacted

in dimethyl sulfoxide (25.0 mL) at 180 °C for 72 h to afford APOP-2 in 55 % yield. Anal. calcd for $C_{32}H_{24}N_{10}$: C, 70.06; H, 4.41; N, 25.53. Found: C, 41.82; H, 2.91; N, 19.61 %.

Synthesis of APOP-3

Similar to the preparation of APOP-1, B3 (378 mg, 0.5 mmol), benzaldehyde (424 mg, 4 mmol) were reacted in dimethyl sulfoxide (22.5 mL) at 180 °C for 72 h to afford APOP-3 in 38 % yield. Anal. calcd for $C_{65}H_{48}N_{20}$: C, 70.38; H, 4.36; N, 25.25. Found: C, 60.37; H, 3.97; N, 29.55 %.

Synthesis of APOP-4

Similar to the preparation of APOP-1, B4 (438 mg, 0.5 mmol), benzaldehyde (424 mg, 4 mmol) were reacted in dimethyl sulfoxide (22.5 mL) at 180 °C for 72 h to afford APOP-4 in 28 % yield. Anal. calcd for $C_{69}H_{56}N_{20}O_4$: C, 67.41; H, 4.59; N, 22.78. Found: C, 55.02; H, 3.93; N, 25.85 %.

It should be noted that the discrepancies between predicted and actual values are common for porous materials due to the presence of end groups and adsorbed water or the residual solvents.^{S1}

Calculation of isosteric heats of adsorption for the APOPs

Virial Equation

A virial-type expression in the following form was used to fit the experimental isotherm data for a given material at different temperatures.^{S2}

$$\ln(P) = \ln(N) + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
(I)

Where *N* is the amount adsorbed at pressure *P*, *T* is the temperature, a_i and b_i are temperature independent empirical parameters, and *m* and *n* determine the number of terms required to adequately describe the isotherm. The resulting virial coefficients a_0 through a_m can then be used to calculate the isosteric heats of adsorption as function of uptake:

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \qquad (II)$$

Where *R* is the universal gas constant (8.314 J K^{-1} mol⁻¹)

It follows that the zero-coverage isosteric heats of adsorption is given by

$$Q_{st} = -Ra_0$$
 (III)

Fig. S1 Thermogravimetric analysis of the APOPs under $N_{\rm 2}$ atmosphere.

Fig. S2 Scanning Electron Microscopy images of the APOPs.

Fig. S3 Powder X-ray diffraction patters of APOP-1 indicate clearly the formation of amorphous porous polymers.

Fig. S4 FTIR spectra of B1 (black) and APOP-1 (black).

Fig. S5 FTIR spectra of B1 (black) and APOP-1-OH (red).

Fig. S6 FTIR spectra of B1 (black) and APOP-1-ONa (green).

Fig. S7 FTIR spectra of B1 (black) and APOP-1-F (blue).

Fig. S8 FTIR spectra of B2 (black) and APOP-2 (cyan).

Fig. S9 FTIR spectra of B3 (black) and APOP-3 (magenta).

Fig. S10 FTIR spectra of B4 (black) and APOP-4 (dark yellow).

Fig. S11 The size distribution of APOP-1 (black), APOP-1-OH (red), APOP-1-ONa (green), APOP-1-F (blue), APOP-2 (cyan), APOP-3 (magenta) and APOP-4 (dark yellow).

Fig. S12 CO₂ sorption isotherms of the APOPs at 298 K.

Fig. S13 CO₂ and N₂ adsorption isotherms at 273 K for the APOPs at a low-pressure range.

Fig. S14 CO₂ and N₂ adsorption isotherms at 298 K for the APOPs at a low-pressure range.

Fig. S15 Calculated Q_{st} for the APOPs as a function of the uptake of CO₂.

Fig. S16 H₂ sorption isotherms of the APOPs at 87 K.

Fig. S17 CH₄ sorption isotherms of the APOPs at 298 K.

Fig. S18 Calculated Q_{st} for the APOPs as a function of the uptake of H₂.

Fig. S19 Calculated Q_{st} for the APOPs as a function of the uptake of CH₄.

Fig. S20 CO₂, CH₄ and N₂ adsorption isotherms of the APOPs at 273 K.

Fig. S21 CO₂, CH₄ and N₂ adsorption isotherms of the APOPs at 298 K.

Fig. S22 The initial slope of the adsorption isotherms of CO₂ (black), CH₄ (red), and N₂ (Green) at 273 K: APOP-1(a), APOP-1-OH (b), APOP-1-ONa (c), APOP-1-F (d), APOP-2 (e), APOP-3 (f), and APOP-4 (g).

Fig. S23 The initial slope of the adsorption isotherms of CO₂ (black), CH₄ (red), and N₂ (Green) at 298 K: APOP-1(a), APOP-1-OH (b), APOP-1-ONa (c), APOP-1-F (d), APOP-2 (e), APOP-3 (f), and APOP-4 (g).

Fig. S24 IAST predicted 15% CO₂ over 85% N₂ adsorption selectivities for the APOPs at 273 K.

Fig. S25 IAST predicted 15% CO₂ over 85% CH₄ adsorption selectivities for the APOPs at 273 K.

Porous materials	$S_{\rm BET}$ (m ² /g)	CO_2 uptake at 0.15 bar (mmol/g)	CO ₂ uptake at 1.0 bar (mmol/g)	Q _{st} (kJ/mol)	Polar sites	Ref.
APOP-1	1298	1.31	4.26	26.6	aminal	This work
APOP-1-OH	875	1.11	2.89	30.0	aminal	This work
APOP-1-ONa	760	1.02	2.89	30.6	aminal	This work
APOP-1-F	724	1.26	3.07	33.3	aminal	This work
APOP-2	906	0.68	2.27	31.7	aminal	This work
APOP-3	1402	1.27	4.54	27.5	aminal	This work
APOP-4	833	0.90	2.70	30.7	aminal	This work
TFM-1	738	0.55	1.73	27.8	s-triazine	S3
P6M	947	0.63	4.17	-	s-triazine	S4
CE-1	960	0.85	2.52	39.7	s-triazine	S5
Ni-Por-1	1711	-	3.13	-	porphyrin	S6
Fe-POP-1	875	1.49	4.30	-	porphyrin	S 7
CPOP-1	2220	1.22	4.82	27	carbazole	S8
Th-1	726	0.90	2.89	27	thiophene	S9
BILP-1	1172	1.63	4.27	26.7	benzimidazole	S10
BILP-4	1306	1.99	5.34	28.7	benzimidazole	S11
PECONF-3	851	1.43	3.49	26	DAB	S12
HCP 4	1642	-	3.91	21.6	-	S13
MOP-C	1237	1.34	3.86	33.7	triazole	S14
Tet4	1917	-	3.03	-	alkyne	S15
POF1B	917	1.78	4.09	-	-OH	S16
BINOL-4	1015	1.33	3.96	29.8	-OH	S17
PPN-6-SO ₃ Li	1186	2.02	4.20	35.7	-SO ₃ Li	S18
PAF-1-450	1191	1.47	4.46	31.6	carbonization	S19
PPN-6-CH2DETA	555	4.06	5.27	56	-CH2DETA	S20
PAF-1	5600	0.3	2.05	15.6	-	S21
PAF-3	2932	0.58	3.47	19.2	-	S21
COF-102	3620	-	1.56	-	-	S22
COF-103	3530	-	1.70	-	-	S22

Table S1. Summary of CO₂ uptake capacities at 273 K of the chemical functionalized POPs at low pressure.

References

- S1. (a) M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng and K. Müllen, *J. Am. Chem. Soc.*, 2009, **131**, 7216-7217; (b) A. Laybourn, R. Dawson, R. Clowes, J. A. Iggo, A. I. Cooper, Y. Z. Khimyak and D. J. Adams, *Polym. Chem.*, 2012, **3**, 533-537.
- S2. J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304-1315.
- S3. X. Zhu, C. Tian, S. M. Mahurin, S.-H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu and S. Dai, J. *Am. Chem. Soc.*, 2012, **134**, 10478-10484.
- S4. S. Ren, M. J. Bojdys, R. Dawson, A. Laybour, Y. Z. Khimyak, D. J. Adams and A. I. Cooper, *Adv. Mater.*, 2012, 24, 2357-2361.
- S5. H. Yu, C. Shen, M. Tian, J. Qu and Z. Wang, Macromolecules, 2012, 45, 5140-5150.
- S6. Z. Wang, S. Yuan, A. Mason, B. Reprogle, D.-J. Liu and L. Yu, *Macromolecules*, 2012, 45, 7413-7419.
- S7. A. Modak, M. Nandi, J. Mondal and A. Bhaumik, Chem. Commun., 2012, 48, 248-250.
- S8. Q. Chen, M. Luo, P. Hammershoj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan and B.-H. Han, J. Am. Chem. Soc., 2012, 134, 6084-6087.
- S9. Y. Luo, B. Li, W. Wang, K. Wu and B. Tan, Adv. Mater., 2012, 24, 5703-5707.
- S10. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23, 1650-1653.
- S11. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- S12. P. Mohanty, L. D. Kull and K. Landskron, Nat. Commun., 2011, 2, 401.
- S13.C. F. Martín, E. Stöckel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, J. Mater. Chem., 2011, 21, 5475-5483.
- S14.R. Dawson, E. Stöckel, J. R. Holst, D. J. Adams and A. I. Cooper, *Energy Environ. Sci.*, 2011, 4, 4239-4245.
- S15. J. R. Holst, E. Stöckel, D. J. Adams and A. I. Cooper, *Macromolecules*, 2010, 43, 8531-8538.
- S16. A. P. Katsoulidis and M. G. Kanatzidis, Chem. Mater., 2011, 23, 1818-1824.
- S17. R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2012, 134, 10741-10744.
- S18. W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H.-C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126-18129.
- S19. T. Ben, Y. Li, L. Zhu, D. Cao, Z. Xiang, X. Yao and S. Qiu, Energy Environ. Sci., 2012, 5, 8370-8376.
- S20. W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei and H.-C. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 7480-7484.
- S21.T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, *Energy Environ. Sci.*, 2011, 4, 3991-3999.
- S22. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875-8883.