Supporting Information

Water-Soluble BODIPY-Conjugated Glycopolymer as Fluorescent Probe for Live Cell Imaging

Zhentan Lu, Lin Mei, Xinge Zhang*, Yanan Wang, Yu Zhao, Chaoxing Li*

Key Laboratory of Functional Polymer Materials Ministry of Education, Institute of Polymer

Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071

E-mail: zhangxinge@nankai.edu.cn (Xinge Zhang); lcx@nankai.edu.cn (Chaoxing Li).

- 1. Synthesis of BODIPYMA (Scheme S1, Figures S1, S2 and S3).
- 2. Synthesis of AcGEMA (Scheme S2, Figures S4 and S5).
- 3. The time-dependence of polymerization time and $Ln (M_0/M)$ (Figure S6).
- 4. The content of BODIPYMA in copolymer (Figure S7).
- 5. GPC profile of p(AcGEMA-*co*-BODIPYMA) (**Figure S8**).
- 6. ¹³C NMR spectrum of p(AcGEMA-*co*-BODIPYMA) (**Figure S9**).
- 7. ¹³C NMR spectra of p(GEMA-*co*-BODIPYMA) (Figures S10 and S11).
- 8. Synthesis of p(HEMA-co-BODIPYMA) (Scheme S3, Figures S12 and S13).
- 9. Cytotoxicity of p(HEMA-co-BODIPYMA) and BODIPYMA (Figures S14 and

S15).

1. Synthesis of BODIPYMA

Scheme S1. Synthesis of BODIPYMA. Conditions: a) DCM, N₂, Et₃N, BF₃·Et₃O,

room temperature; b) DMF, N_2 , tetrabutylammonium bromide, 60 °C, 16 h.

Figure S1. ¹H NMR spectrum of BODIPYMA (CDCl₃ as solvent).

Figure S2. ¹³C NMR spectrum of BODIPYMA (CDCl₃ as solvent).

Figure S3. FT-IR spectrum of BODIPYMA.

The peaks at 2853 and 2924 cm⁻¹ were assigned to C-H stretching vibrations of =CH₂. The peak at 1738 cm⁻¹ represented C=O stretching vibrations. The result proved the introduction of methylacrylate unit.

2. Synthesis of AcGEMA

Scheme S2. Synthesis of AcGEMA.

Figure S4. ¹H NMR spectrum of AcGEMA (CDCl₃ as a solvent).

Figure S5. ¹³C NMR spectrum of AcGEMA (CDCl₃ as a solvent).

3. The time-dependence of polymerization time and $Ln (M_0/M)$

Figure S6. The time-dependence of polymerization time and $Ln (M_0/M)$.

The polymers showed a typical linear variation of $Ln (M_0/M)$ with polymerization time, which was inherent in living free radical polymerizations. The intersection of the fitting straight line and the X axis was not at the origin, showing that the polymerization needed an induction period.

4. The content of BODIPYMA in copolymer

Figure S7. The BODIPYMA content as a function of the molecular weight of copolymer.

The results in Figure S7 show that there was a positive correlation nonlinearly between the BODIPYMA content and the molecular weight of copolymer, and the content of BODIPYMA increased from 0.74% to 1% as the molecular weight enhanced from 8.8 to 31.2 kDa.

5. GPC profiles of p(AcGEMA-*co***-BODIPYMA)**

Figure S8. GPC profiles of p(AcGEMA-co-BODIPYMA): (A) $M_n = 10.7 \text{ kDa}$, PDI =

1.32; (B) $M_n = 20.8 \text{ kDa}$, PDI = 1.18; and (C) $M_n = 31.2 \text{ kDa}$, PDI = 1.13. THF as an

eluent and polystyrene as a calibration standard.

6. ¹³C NMR spectrum of p(AcGEMA-co-BODIPYMA)

Figure S9. ¹³C NMR spectrum of p(AcGEMA-*co*-BODIPYMA) (CD₃Cl as solvent).

7. ¹³C NMR spectra of p(GEMA-co-BODIPYMA)

Figure S10. ¹³C NMR spectrum of p(GEMA-*co*-BODIPYMA) (DMSO as solvent).

Figure S11. ¹³C NMR spectrum of p(GEMA-*co*-BODIPYMA) in solid.

8. Synthesis of of p(HEMA-co-BODIPYMA)

Scheme S3. Scheme for the synthesis of p(HEMA-co-BODIPYMA).

Figure S12. ¹H NMR of p(HEMA-*co*-BODIPYMA) (DMSO as solvent).

Figure S13. FT-IR spectrum of p(HEMA-*co*-BODIPYMA).

9. Cytotoxicity of p(HEMA-co-BODIPYMA) and BODIPYMA (Figures S14 and S14).

Figures S14. Cell viability of HepG2 and NIH3T3 cells after the treatment with the p(HEMA-*co*-BODIPYMA) and BODIPYMA. p(HEMA-*co*-BODIPYMA) (A and B); and BODIPYMA (C and D). Each value represents the mean \pm SD (n = 5).

Figure S15. Histograms of ethidium bromide as an indicator of apoptosis in NIH3T3 cells treated with 40 nmol/ml of p(GEMA-*co*-BODIPYMA), p(HEMA-*co*-BODIPYMA) and BODIPYMA for 24 h, respectively. (A) viable cell population and (B) apoptotic cell population.