Supporting Information

Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO₂+N₂ and CH₄+N₂ mixtures

Heping Ma^a, Hao Ren^a, Xiaoqin Zou^a, Shuang Meng^a, Fuxing Sun^a, and Guangshan Zhu^{a,b*}

^a State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, 130012, China. Tel/Fax: (+86)431-8516-8331 E-mail: zhugs@jlu.edu.cn

^b Queensland Micro- and Nanotechnology Centre, Griffith University, Queensland, 4111, Australia.

Fig. S1 XRD patterns of PAF-26-COOH, PAF-26-COOLi, PAF-26-COONa, PAF-26-COOK and

PAF-26-COOMg samples.

Fig. S2 SEM images of PAF-26-COOH (a) and PAF-26-COOMg (b).

Fig. S3 TG curves of PAF-26-COOH and PAF-26-COOM samples.

Table S1. Elemental analysis of PAF-26-COOH.

	C (wt %)	H (wt %)	N (wt %)	S (wt %)
Theoretical value	86.5	3.68	0	0
Experiment value	87.2	3.54	0.02	0.028

Fig. S4 Pore size distribution of PAF-26-COOH (a), PAF-26-COOLi (b), PAF-26-COONa (c),

PAF-26-COOK (d), and PAF-26-COOMg (e) samples.

Fig. S5 CO₂ adsorption isotherms for PAF-26-COOH and PAF-26-COOM at 298 K.

Fig. S6 CH₄ adsorption isotherms for PAF-26-COOH and PAF-26-COOM at 298 K.

Fig. S7 N_2 adsorption isotherms for PAF-26-COOH and PAF-26-COOM at 273 K (a), and at 298 K (b).

Fig. S8 Cyclic CO_2 adsorption–desorption of freshly prepared PAF-26-COOMg (black), after 2 months (red) and 4 months (bule) exposure in air. Before measurement, the sample was degassed at 80 °C for 5 h.

Fig S9. CO₂ adsorption isotherms of PAF-26-COOMg and CO₂ adsorption of PAF-26-COOMg

obtained after 3 days exposure in wet air at 273 K.

Fig S10. XPS spectra of PAF-26-COOH.

Fig. S11 Enlarged views of XPS spectra of Pd 3d, Cu 2p, Br 3d, P 2p, N 1s, and I 3d in the PAF-26-COOH sample.

Qst Calculations

The Q_{st} of CO₂ and CH₄ was calculated as a function of the gas uptake based on the adsorption isotherms at 273 K and 298 K (the isotherms and fitting parameters are shown in Fig. S9-S13). The data was modelled with a virial-type expression composed of parameters a_i and b_i according to *equation* 1. The isosteric heats of adsorption were calculated by fitting the parameters according to *equation* 2. In these two equations, p is the pressure, N the amount adsorbed, T the temperature, and R the universal gas constant, m and n determine the number of terms required to adequately describe the isotherm, a_i and b_i are virial coefficients.

$$\ln p = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_{i} N^{i} + \sum_{i=0}^{n} b_{i} N^{i}$$
(1)
$$Q_{st} = -R \sum_{i=0}^{m} a_{i} N^{i}$$
(2)

The basicity of metalized PAF-26 is estimated by the moles of ion contained in the material multiplied by the hydrolysis constants of the metal ion; thus, the pKb for PAF-26-COOLi: 2.46*13.8=33.948, PAF-26-COONa: 2.6*14.6=37.96, PAF-26-COOK: 2.4*15=36, PAF-26-COOMg: 1.3*11.6=15.08, respectively.^[a] [a] C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations. A Wiley-Interscience publication, 1976.

Selectivity Calculations

The ideal adsorption solution theory (IAST) was used to predict the binary mixture adsorption of CO_2/N_2 and CH_4/N_2 from the experimental pure-gas isotherms. It has been reported that IAST can accurately predict gas mixture adsorption in many nanoporous materials, including porous-organic frameworks. The single-component isotherms were fitted using a dual-site Langmuir-Freundlich equation:

$$q = q_{m1} \cdot \frac{b_1 \cdot p^{1/n_1}}{1 + b_1 \cdot p^{1/n_1}} + q_{m2} \cdot \frac{b_2 \cdot p^{1/n_2}}{1 + b_2 \cdot p^{1/n_2}}$$

Here, *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mmol g^{-1}), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mmol g^{-1}), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (kPa⁻¹), and n_1 and n_2 represent the deviations from an ideal homogeneous surface.

The IAST adsorption selectivity, S, for binary mixtures of $CO_2(1)/N_2(2)$ or $CH_4(1)/N_2(2)$, is defined as

$$S = \frac{q_1 / q_2}{p_1 / p_2}$$

where q_i and p_i (i=1, 2) are the mole fractions of component 1 and 2 in the adsorbed and bulk phases, respectively. **Table S2.** Comparison of Q_{st} for CO_2 and CH_4 , and selectivities for CO_2 and CH_4 over N_2 at 298 K using PAF-26 materials in this work with other porous materials from open literatures.

Adsorbent	Q_{st} for CO_2	Selectivity	Q_{st} for CH_4	Selectivity	Reference
	(kJ mol ⁻¹)	for CO ₂	(kJ mol ⁻¹)	for CH ₄	
		over N ₂		over N ₂	
13 X zeolite				2.3-4.0	S1
Silicalite-1				1.8-3.0	S1
H-ZSM-5				3.0-3.6	S1
Activated carbon				4.0-5.5	S1
BILP-1-BILP-7	26.7-28.8	62-113	13-18.4	-	S2
СМР-1-(ОН)2	28.5	-	-	-	S3
CMP-1-(CH ₃)2	28.6	-	-	-	S3
СМР-1-СООН	35	-	-	-	S3
CMP-1-NH ₂	27.8	-	-	-	S3
PPN-6-SO ₃ H	30.5	150	-	-	S4
PPN-6-SO ₃ Li	36	414	-	-	S4
UMCM-1	12		10	2 ^a	\$5,\$6
ZIF-68		18.7	15.7	3.5 ^b	\$5,\$6
ZIF-69		20	16.2	3 ^b	\$5,\$6
IRMOF-1	17		9.98	2 ^c	S5,S6

MIL-47(V)	25	10	14.7	5 [°]	\$5,\$6
HKUST-1	35	32	18.4	3 ^c	\$5,\$6
IR-MOF-11- 14	17-25	3-11	10-20	2-4 ^c	\$5,\$6
Cu(Me-4py-trz-ia)	30		18.5	4.4 ^d	S7
Basolite A100			19.8	4 ^d	S7
PAF-26-COOH	28.1	20	14.3	4.2 ^e	This work
PAF-26-COOLi	31.8	24	16.5	4.4 ^e	This work
PAF-26-COONa	30.0	53	26.0	5.0 ^e	This work
PAF-26-COOK	32.6	50	24.0	5.8 ^e	This work
PAF-26-COOMg	35.0	73	21.5	6.0 ^e	This work

Adsorption selectivities of CH₄ over N_2^{a} at 4 Mpa, ^b at 3 MPa, ^c at 2 MPa, ^d at 1 MPa,

^e at 0.1 MPa and at the temperature of 298 K.

References:

- S1. P. Li and F. H. Tezel, J. Chem. Eng. Data, 2009, 54, 8.
- S2. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511.
- S3. R. Dawson, D. J. Adams, A. I. Cooper, Chem. Sci., 2011, 2, 1173.
- S4. W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H. C. Zhou, J. Am. Chem. Soc.,

2011, **133**, 18126.

- S5. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm,
- T. H. Bae, J. R. Long, Chem. Rev., 2012, 112, 724.
- S6. J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev., 2012, 41, 2308.

S7. J. Möllmer, M. Lange, A. Möller, C. Patzschke, K. Stein, D. Lässig, J. Lincke, R.

Gläser, H. Krautscheid, R. Staudt, J. Mater. Chem., 2012, 22, 10274.