Electronic Supplementary Information

Sulfonated poly(arylene ether phosphine oxide)s with various distribution and content of pendant sulfonic acid groups synthesized by direct polycondensation

Huiying Liao,^a Ke Zhang,^b Gangsheng Tong,^c Guyu Xiao^{a*} and Deyue Yan^a

^a School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

^b School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.

^c Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

1. Assignment of the NMR spectra of DSPPO

The dept135 and ¹³C NMR spectra of DSPPO are indicated in Fig. S1a. As shown,

Fig. S1. Dept135, ¹³C NMR (a) and HMQC (b) spectra of DSPPO

^{*} Corresponding author. Tel: +86 21 54742664, E-mail: gyxiao@sjtu.edu.cn

the signal peaks of the carbon atoms of DSPPO were well assigned. Carbon 1 and 1' displayed a C/F coupling constant of ~256 Hz. Carbon 4, 4' and 7 exhibited a C/P coupling constant of about 100 Hz, which is equivalent to that of the carbon atoms with similar chemical environments.^[1]

The HMQC spectrum of DSPPO is presented in Fig. S1b. The signals of the odd carbon atoms of DSPPO in the HMQC spectrum was determined as above, so the signal peaks of the hydrogen atoms of DSPPO could be assigned by the HMQC spectrum, which were indicated in Fig. S1b.

2. Assignment of the ¹H NMR spectra of polymers

structure of PEPOF, msPEPOF-100, dsPEPOF-100 The chemical and tsPEPOF-130 is displayed in Fig. S2a. The ¹H NMR spectrum of PEPOF was assigned in our previous report as indicated in Fig. S2b,^[2] which was used to assist the analysis of the ¹H NMR spectra of the three ionomers. msPEPOF-100 is a homopolymer, its signal peaks in the ¹H NMR spectrum could be well assigned (Fig. S2b). On the other hand, as indicated in Figure S2a, the non-sulfonated repetitive unit of tsPEPOF-130 is exactly the repetitive unit of PEPOF. Moreover, tsPEPOF-130 and msPEPOF-100 also possess identical structural moieties, *i.e.* benzenesulfonate side groups and hexafluoroisopropylidene diphenyl moieties. These hydrogen atoms with similar chemical environments have approximate chemical shift.^[3] Therefore, on the basis of the assignment of the ¹H NMR spectra of PEPOF and msPEPOF-100, the assignment of the ¹H NMR spectrum of tsPEPOF-130 could be determined, which was presented in Fig. S2b. Similarly, the assignment of the ¹H NMR spectrum of dsPEPOF-100 was also resolved by the assistance of the ¹H NMR spectra of PEPOF. msPEPOF-100 and tsPEPOF-130. Hence, all the ¹H NMR spectra of the three ionomers were determined.

Fig. S2. Chemical structures (a) and ¹H NMR spectra (b) of PEPOF, msPEPOF-100, dsPEPOF-100 and tsPEPOF-130.

		1	2	
Membranes	Mechanical properties			Mathanal
	Tensile	Young's	Elongation	permeability $(\times 10^{-7} \text{ cm}^2/\text{s})$
	strength	modulus	at break	
	(MPa)	(GPa)	(%)	
msPEPOF-100	40.4	1.10	6.2	2.4
dsPEPOF-100	43.3	1.11	10	2.2
dsPEPOF-110	42.4	1.13	8.2	2.7
dsPEPOF-120	44.4	0.94	7.4	3.3
tsPEPOF-100	41.3	1.08	6.0	1.2
tsPEPOF-110	43.4	1.13	7.0	1.4
tsPEPOF-120	46.5	1.09	6.7	2.0

0.77

_

9.0

_

2.5 15

Table S1. Mechanical properties and methanol permeability of membranes.

37.8

tsPEPOF-130

Nafion 117

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2014

References

- 1. L. C. Fu, G. Y. Xiao, D. Y. Yan, J. Mater. Chem., 2012, 22, 13714–13722.
- 2. H. Y. Liao, G. Y. Xiao, D. Y. Yan, Chem. Commun., 2013, 49, 3979-3981.
- 3. N. Tan, G. Y. Xiao, D. Y. Yan, Chem. Mater., 2010, 22, 1022–1031.