Synthesis of a Cyclen-Containing DisubstitutedPolyacetylenewithStrongGreenPhotoluminescence and its Application as SensitiveChemosensor towardsSulfide Anion with GoodSelectivity and High Sensitivity

Yanfen Huang, Daxin Ou, Can Wang, Chi Huang,* Qianqian Li and Zhen Li*

Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials,

Wuhan University, Wuhan 430072, China

* Corresponding author. E-mail address: lizhen@whu.edu.cn (Zhen Li), Tel: 86-27-62254108, Fax: 86-27-68756757; chihuang@whu.edu.cn (Chi Huang).

Table 1 Elemental analysis of P1 and P2.

Element -	Content (%)	
	P1	P2
Ν	0	12.90
С	65.42	74.38
Н	4.88	8.58

Figure S1a. IR spectra of polymers P1 and P2.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S1b. TGA curves of P2 at a heating rate of 10 $^{\circ}$ C/min under the atmosphere of N₂.

Figure S2a. Time course of the fluorescence response of **P2** (1.0×10^{-5} mol/L) in THF/H₂O (v/v=1:1) upon the addition of various concentration of Cu²⁺. (λ_{Ex} =360 nm, slit: 10 nm/10 nm).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S2b. The UV-vis absorption spectra of **P2** in THF/H₂O (v/v=1:1), before and after the addition of Cu^{2+} ions. The polymer concentration was 1.0×10^{-5} mol/L, The concentration of Cu^{2+} was 3.0×10^{-6} mol/L.

Figure S3. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Co²⁺ ions was 3.0×10^{-5} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S4. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Na⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S5. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Pb²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S6. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Mn²⁺ ions was 3.0×10^{-5} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S7. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Fe³⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S8. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Fe²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S9. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Zn²⁺ ions was 3.0×10^{-5} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S10. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Mg²⁺ ions was 3.0×10^{-5} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S11. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Cu²⁺ ions was 3.0×10^{-6} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S12. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Ca²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S13. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Ni²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S14. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Li⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S15. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the K⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S16. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Ba²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S17. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Cr³⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S18. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Cd²⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S19. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Ag⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S20. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Al³⁺ ions was 3.0×10^{-5} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S21. Fluorescence emission response profiles of **P2**. The polymer concentration was fixed at 1.0×10^{-5} mol/L and the concentration of the Hg²⁺ ions was 3.0×10^{-5} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S22. Fluorescence emission spectra of **P2** (1.0×10^{-5} mol/L) in THF-H₂O (1:1, v/v) in the presence of different amounts of metal ions (3.0×10^{-5} mol/L). The concentration of Cu²⁺ was 3.0×10^{-6} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S23. Time courses of the fluorescence response of **P2** (1.0×10^{-5} mol/L) in THF-H₂O (1:1, v/v, 10 mM PBS, pH 7.50, 8.50, 9.50) upon the addition of Cu²⁺ (3.0×10^{-6} mol/L). (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S24a. Fluorescence emission spectra of **P2** in THF-H₂O (1:1, v/v, 10 mM PBS, pH 7.50) before and after the addition of Cu²⁺ and turned on by S²⁻ (Na₂S). The polymer concentration was fixed at 1.0×10^{-5} mol/L while the Cu²⁺ concentration was fixed at 3.0×10^{-6} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S24b. Fluorescence emission spectra of **P2** in THF-H₂O (1:1, v/v, 10 mM PBS, pH 8.50) before and after the addition of Cu²⁺ and turned on by S²⁻ (Na₂S). The polymer concentration was fixed at 1.0×10^{-5} mol/L while the Cu²⁺ concentration was fixed at 3.0×10^{-6} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)

Figure S24c. Fluorescence emission spectra of **P2** in THF-H₂O (1:1, v/v, 10 mM PBS, pH 9.50) before and after the addition of Cu²⁺ and turned on by S²⁻ (Na₂S). The polymer concentration was fixed at 1.0×10^{-5} mol/L while the Cu²⁺ concentration was fixed at 3.0×10^{-6} mol/L. ($\lambda_{Ex} = 360$ nm, slit: 10 nm/10 nm)

Figure S25. Fluorescence emission spectra of **P2** before and after the addition of Cu^{2+} and turned on by S²⁻ (K₂S). The polymer concentration was fixed at 1.0×10^{-5} mol/L while the Cu²⁺ concentration was fixed at 3.0×10^{-6} mol/L. (λ_{Ex} =360 nm, slit: 10 nm/10 nm)