Supporting Information

A versatile Fe₃O₄ based platform via iron-catalyzed AGET ATRP: towards various multifunctional nanomaterials

Weiwei He^a, Liang Cheng^b, Lifen Zhang^a, Zhuang Liu^b*, Zhenping Cheng^a* and

Xiulin Zhu^a*

^aJiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China Fax: +86-512-65882787E-mail: <u>chengzhenping@suda.edu.cn</u> (Z. P. Cheng), xlzhu@suda.edu.cn (X. L. Zhu)

^bInstitute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China E-mail: <u>zliu@suda.edu.cn</u> (Z. Liu)

Scheme S1. Synthetic route of the precursor consisting of thiol groups towards various multifunctional NPs by iron-mediated AGET ATRP.

Fig. S1 ¹H NMR spectrum of monomer ETCEMA.

Fig. S2 TEM of (a) Fe₃O₄@SiO₂@Br and (b) Fe₃O₄@SiO₂@PPEGMA-*co*-ETCEMA; scale bars are 200 and 20 nm for a and b, respectively.

Fig. S3 FT-IR spectra of NPs of (a) $Fe_3O_4@SiO_2-Br$, (b) $Fe_3O_4@SiO_2@PPEGMA-co-PETCEMA$.

Fig. S4 TEM images of $Fe_3O_4@SiO_2$ with different silica feeding dose of 0.1, 0.2 and 0.4 mL for (a), (b) and (c) respectively. Scale bars are 50 nm.

Fig. S5 TGA curves of NPs of (a) $Fe_3O_4@SiO_2-Br$, (b) $Fe_3O_4@SiO_2@PPEGMA-co-PETCEMA$ and (c) $Fe_3O_4@SiO_2@PPEGMA-co-PMEMA$.

Fig. S6 Cell viability of Fe₃O₄@SiO₂@PPEGMA-*co*-PMEMA with different iron concentration.

Fig. S7 Magnetic hysteresis loops at 300K of (a) Fe₃O₄ and (b) Fe₃O₄@SiO₂ NPs.

Fig. S8 ¹H NMR spectrum of CS-2.

Fig. S9 ¹H NMR spectrum of azopyridine.

Fig. S10 Magnetic hysteresis loops at 300K of the as-prepared $Fe_3O_4@SiO_2@PPEGMA$ -*co*-PMEMA@CS2 NPs.

Fig. S11 ¹H NMR spectrum of IR825.

Fig. S12 Magnetic hysteresis loops at 300K of the as-prepared Fe₃O₄@SiO₂@PPEGMA-*co*-PMEMA@IR825 NPs.

Fig. S13 Fluorescence spectra of Fe₃O₄@SiO₂@PPEGMA-*co*-PMEMA@IR825 NPs in methanol and water. Both samples were tested at iron concentration of 0.025 mg/mL.