Supporting Information for

One pot synthesis and characterization of novel poly(ether ester) mutiblock copolymers containing poly(tetramethylene oxide) and poly(ethylene terephthalate)

Weichun Huang, Yingbo Wan, Jianying Chen, Qiaozhen Xu, Xiaohong Li,* Xiaoming Yang, Yaowen Li, and Yingfeng Tu*

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Fig. S1 ¹H NMR spectra of PET-*b*-PTMO-*b*-PET triblock copolymer. Solvent: $CF_3COOD/CDCl_3$ (1/10 in volume); concentration: 0.02 g/mL. Polymerization conditions: $m_{PTMO}/m_{COETs} = 3/1$ with 0.075 wt% Ti(n-C₄H₉O)₄ hot-pressed at 270 °C under a 10 MPa pressure for 90 minutes.

Fig. S2 Two dimensional ¹H-¹³C HSQC spectra of PET-*b*-PTMO-*b*-PET triblock copolymer, with the whole spectra (A), and selected enlarged regions (B, C and D). Solvent: CF₃COOD/CDCl₃ (1/10 in volume); concentration: 0.02 g/mL.

Sample	Reaction time (min)	<i>a</i> 4.16	<i>b</i> 4.60	с 8.12	<i>d</i> 4.78	е 4.42	<i>f</i> + <i>g</i> 1.67- 1.86	h 3.64
P1-1	15	4.00	4.05	51.0	35.1	9.65	417	408
P1-2	30	4.00	4.34	104	72.2	19.7	854	847
P1-3	45	4.00	4.52	184	132	35.7	1510	1490
P1-4	60	4.00	4.68	270	200	52.9	2250	2210
P1-5	90	4.00	4.79	482	354	94.1	3980	3890

Table S1 The integration value of peaks for (PET-*b*-PTMO-*b*-PET)_x multiblock copolymers with 0.075 wt% Ti(n-C₄H₉O)₄ at 270 °C at different reaction time by ¹H NMR.

Table S2 The integration value of peaks for (PET-*b*-PTMO-*b*-PET)_x multiblock copolymers at different reaction time by ¹H NMR and the corresponding structures calculated. Polymerization condition: 0.15 wt% Ti(n-C₄H₉O)₄ at 270 °C.

δ (ppm)	Reaction time (min)	<i>a</i> 4.16	<i>b</i> 4.60	с 8.12	<i>d</i> 4.78	е 4.42	<i>f+g</i> 1.67- 1.86	h 3.64	N _{TMO}	N _{ET}	S _{TMO}	S _{ET}	x	<i>M</i> _n (kg/mol)
P2-1	15	4.00	4.91	56.7	40.1	11.3	464	456	117	10.0	41.4	3.55	2.83	10.3
P2-2	30	4.00	5.36	119	90.1	23.7	972	962	246	22.5	41.6	3.80	5.93	22.0
P2-3	45	4.00	5.82	191	144	39.2	1550	1540	395	36.0	41.3	3.77	9.55	35.4
P2-4	60	4.00	6.07	296	226	58.5	2370	2350	602	56.5	41.2	3.86	14.6	54.2
P2-5	90	4.00	6.49	537	423	105	4220	4210	1080	106	41.1	4.03	26.3	98.1

 M_n : number-average molecular weights of polymers by means of NMR.

Fig. S3 ¹H NMR spectra of (PET-*b*-PTMO-*b*-PET)_x multiblock copolymers synthesized at different reaction time: 15 min (P2-1), 30 min (P2-2), 45 min (P2-3), 60 min (P2-4), 90 min (P2-5). Polymerization condition: 0.15 wt% Ti(n-C₄H₉O)₄ at 270 °C. Solvent: CF₃COOD/CDCl₃ (1/10 in volume); concentration: 0.02 g/mL.

Table S3 The integration value of peaks for (PET-*b*-PTMO-*b*-PET)_x multiblock copolymers at different reaction time by ¹H NMR and the corresponding structures calculated. Polymerization condition: 0.075 wt% Ti(n-C₄H₉O)₄ at 280 °C.

Sample	Reaction time (min)	а 4.16	<i>b</i> 4.60	с 8.12	<i>d</i> 4.78	е 4.42	<i>f+g</i> 1.67- 1.86	h 3.64	N _{TMO}	N _{ET}	S _{TMO}	S _{ET}	x	<i>M_n</i> (kg/mol)
P3-1	15	4.00	4.48	53.7	43.2	11.6	436	432	111	10.8	38.2	3.72	2.90	10.1
P3-2	30	4.00	5.28	124	95.6	27.1	1010	1000	257	23.9	37.9	3.53	6.78	23.1
P3-3	45	4.00	5.74	186	151	41.3	1490	1480	380	37.8	36.8	3.66	10.3	34.6
P3-4	60	4.00	6.21	283	220	61.0	2200	2190	563	55.0	36.9	3.61	15.3	51.1
P3-5	90	4.00	6.79	469	373	104	3890	3870	994	93.3	38.2	3.59	26.0	89.5

 M_n : number-average molecular weights of polymer by means of NMR.

Fig. S4 ¹H NMR spectra of (PET-*b*-PTMO-*b*-PET)_x multiblock copolymers synthesized at different reaction time: 15 min (P3-1), 30 min (P3-2), 45 min (P3-3), 60 min (P3-4), 90 min (P3-5). Polymerization condition: 0.075 wt% Ti(n-C₄H₉O)₄ at 280 °C. Solvent: CF₃COOD/CDCl₃ (1/10 in volume); concentration: 0.02 g/mL.

Deduction of equation 6:

PET-*b*-PTMO-*b*-PET + PET-*b*-PTMO-*b*-PET
$$\xrightarrow{k}$$
 (PET-*b*-PTMO-*b*-PET)₂ + EG
PET-*b*-PTMO-*b*-PET+(PET-*b*-PTMO-*b*-PET)₂ \xrightarrow{k} (PET-*b*-PTMO-*b*-PET)₃ + EG

Assuming each chain end groups have the same reactivity, then we will have the following kinetics equation:

$$-\frac{dc}{dt} = kc^2$$

where c is the concentration of functional end group, t is the reaction time, and k is the reaction constant, which related to the catalyst concentration and temperature. Integration of the above equation will give:

$$\int -\frac{dc}{c^2} = \int kdt$$
$$\frac{1}{c_t} - \frac{1}{c_0} = kt$$

where c_0 and c_t are the corresponding concentration of functional groups at initiate time and time *t*, respectively. The above equation can be rewritten as:

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

$$\frac{c_0}{c_t} = kc_0t + 1$$

The degree of polymerization, X_n , can be deduced by its definition:

$$X_n = \frac{c_0}{c_t} = kc_0t + 1 = k't + 1$$