Supporting Information

Selective O-acyl Ring-Opening of β -Butyrolactone Catalyzed by Trifluoromethane Sulfonic Acid: Application to the Preparation of Well-defined Block Copolymers

Aline Couffin,^a Blanca Martín–Vaca,^{a,*} Didier Bourissou,^{a,*} Christophe Navarro^b

^a Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, Université de Toulouse, UPS, 118 Route de Narbonne, F-31062 Toulouse, France.

^bArkema, Lacq Research Center, Po Box 34, 64170 Lacq (France).

*To whom correspondence should be addressed: Phone (+33)(0)561556803, Fax (+33)(0)561558204, Email: dbouriss@chimie.ups-tlse.fr

Figure S1. ¹H NMR spectrum (CDCl₃, 300 MHz) of a PBL prepared with MSA as catalyst. Polymerization conditions: Run 2 in Table 1. * Residual monomer.

Figure S2. MALDI–TOF mass spectrum (Region m/z 2 000 to 5 000) of a PBL₄₀ polymer. (Polymerization conditions: Run 2 Table 1). Blue: population of polymer chains initiated by *n*-pentanol M = $88(M_{n-pentOH}) + n \times 86.09(M_{\beta-BL}) + 23(Na+)$. Red: population of cyclic polymer chains; Green: population of polymer chains initiated by *n*-pentanol and resulting from crotonisation reaction M = $88(M_{n-pentOH}) + n \times 86.09(M_{\beta-BL}) + 23(Na+)$.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S3. ¹H NMR spectrum (CDCl₃, 300MHz) of distilled β -BL. Signal at δ 5.77 ppm corresponds to olefinic H atoms resulting from crotonisation reactions.

run	Init.	[BL]/[CL]	% β -BL ^b	$M_{\rm n}^{\ c}$ (g/mol)	D^{c}
1	C ₅ H ₁₁ OH	$20/20^{d}$	47	5 160	1.16
2	$C_5H_{11}OH$	20/20	46	6 670	1.21
3	$C_5H_{11}OH$	60/60	48	14 690	1.30
4	C ₄ H ₈ (OH) ₂	120/0	100	10 730	1.18
		120/160	42	28 700	1.33
5	PEG ₁₀₀₀₀ (OH) ₂	60/0	100	16 730	1.23
6	PEG ₁₅₀₀ (OH) ₂	60/0	100	5 600	1.26
		60/60	51	9 900	1.46
7	Krazol LBH-P	60/0	100	9 870	1.21
		60/60	49	16 790	1.40

Table S1. β -BL/ ϵ -CL copolymerization reactions catalysed by HOTf^a

^{*a*}Polymerization of of β -butyrolactone carried out at 30 °C in C₆D₆ solution. ^{*b*}Determined by ¹H NMR spectroscopy.

 $^{c}\mbox{Obtained}$ from size exclusion chromatography analysis in tetrahydrofuran using polystyrene standards.

^dPCL-*b*-PBL prepared by ROP of ε-CL first.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S4. ¹H NMR spectrum (CDCl₃, 300 MHz) of the block copolymer $PCL_{20}-b-PBL_{20}$ ($M_n = 5$ 160 g/mol): a) After polymerization of the ε -CL initially feed. b) ¹H NMR spectrum of the final $PCL_{20}-b-PBL_{20}$ copolymer. Polymerization conditions: Run 1 in Table S1. * refers to the DIEA.HOTf salt.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S5. ¹H NMR spectrum (CDCl₃, 300 MHz) of the telechelic HO-PBL-OH (a) and of the triblock copolymer PCL–*b*–PBL–*b*–PCL (b) ($M_n = 28\ 700\ g/mol$): Polymerization conditions: Run 4 in Table S1.

Figure S6. SEC traces of the telechelic HO-PBL-OH block and final PCL-b-PBL-b-PCL copolymer

Figure S7. SEC traces of the telechelic HO-PBL-*b*-PEG-*b*-PBL-OH block and final PCL–*b*–PBL–*b*–PEG–*b*–PBL–*b*–PCL copolymer

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S8. ¹H NMR spectrum (CDCl₃, 300 MHz) of the block copolymer PCL–*b*–PBL–*b*–PEG–*b* –PBL–*b*–PEG–*b* –PBL–*b*–PEG–*b* –PBL–*b*–PEG–*b* –PBL–*b*–PEG–*b* – PBL–*b*–PEG–*b* – PBL–*b*–PEG–*b* – PBL–*b*–PCL

Figure S9. ¹³C NMR spectrum (CDCl₃, 75 MHz) of the block copolymer PCL–*b*–PBL–*b*–PEG–*b*–PBL–*b*–PEC. POlymerization conditions: Run 6 in Table S1.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Scheme S1. Preparation of the block copolymer PCL–*b*–PBL–*b*–PBD–*b*–PBL–*b*–PCL: Polymerization conditions: Run 7 in Table S1.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S10. ¹H NMR spectra (CDCl₃, 300 MHz) of the block copolymer PCL–*b*–PBL–*b*–PBL–*b*–PBL–*b*–PCL: Polymerization conditions: Run 7 in Table S1. a) PBD; b) PBL–*b*–PBD–*b*–PBL; c) PCL–*b*–PBL–*b*–PBL–*b*–PBL–*b*–PBL–*b*–PBL–*b*–PCL.

Figure S11. ¹³C NMR spectra (CDCl₃, 75 MHz) of the block copolymer PCL–*b*–PBL–*b*–PBD–*b*–PBL–

Figure S12. SEC traces of the telechelic HO-PBL-*b*-PBD-*b*-PBL-OH block and final PCL–*b*–PBL–*b*–PBD– *b*–PBL–*b*–PCL copolymer.