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Synthesis of BTP ligand 

Materials. All reagents were used as received from commercial suppliers without further 

purification unless otherwise stated. Toluene, dichloromethane (CH2Cl2), dimethyl formamide 

(DMF), diisopropylanmine (DIPA) and acetonitrile were distilled under N2 over CaH2, 

tetrahydrofuran (THF) over Na, prior to use.  

Safety Comments. Sodium azide is very toxic, personal protection precautions should be taken. 

As low-molecular-weight organic azides are potential explosives, care must be taken during their 

handling. Generally, when the total number of carbon (nC) plus oxygen (nO) atoms is less than the 

total numbers of nitrogen atoms (nN) by a ratio of three, that is, (nC+nO)/nN < 3, the compound is 

considered as an explosive hazard. In these instances, the organic azido compound was prepared 

prior to use and used immediately. 

General Methods. All reactions requiring inert gas were performed under N2 atmosphere. 

Column chromatography was carried out with 200-400 mesh silica gels using specified eluents. 1H 

NMR spectra were recorded on a Bruker spectrometer (400 MHz), chemical shifts were 

referenced to CDCl3 internal standard (7.26 ppm for 1H). 13C NMR spectra were recorded on a 

Bruker spectrometer (400 MHz), chemical shifts were referenced to CDCl3 internal standard 

(77.16 ppm for 13C). Molecular weight and PDI were measured by GPC (Waters 1515 Binary 

HPLC Pump, Waters 2414 Refractive Index Detector). THF was used as an eluent at a flow rate of 

1.0 mL/min at 35 °C. Polystyrene (PS) standards were used for calibration.  

High-Resolution Mass Spectroscopy. HR-MS spectra were recorded on a Bruker En Apex 

ultra 7.0T FT-MS apparatus. 

MALDI Spectroscopy. The MALDI-MS measurements were carried out with a Bruker 

MicroFlex MALDI-TOF-MS. A 4 mg∙mL-1 solution of compound 6 in tetrahydrofuran, 30 μL of a 

20 mg∙mL-1 solution of sodium trifluoroacetate (NaTFA, in tetrahydrofuran) was added to aid 

cationization. A 20 mg∙mL-1 solution of 1,8,9-anthracenetriol (dithranol) matrix was prepared in 

tetrahydrofuran solvent, and equal volumes of matrix and sample were mixed together. 

The sample:matrix solution was spotted on a stainless steel MALDI plate. MALDI experiments 

were conducted in reflection mode. Spectra were obtained with delayed extraction at laser powers 

slightly above the threshold power for detection of sample ions. Spectra from 100 to 500 laser 

shots were accumulated to obtain a composite spectrum. 
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Fourier transform infrared spectroscopy (FTIR). FTIR spectra were recorded on a Nicolet 

380 FT-IR spectrometer as KBr disks. 

 Wide angle X-ray diffraction (WAXD). Films containing different types of metal ions (0.2 g) 

were dissolved in CHCl3 (1 mL) and then spin-coated on clean glass substrate with a speed of 

2000 rpm for 25 sec. Measurements were done on a Rigaku Ultima IV X-ray diffractometer with a 

wavelength of 0.154 nm and an acquisition time of 30 min.  

 Florescence spectroscopy. Solutions were prepared with a concentration of 29 mg·mL-1 in 

CHCl3 and tested on Hitachi F7000 fluorescence spectrometer. Samples were excited with a 

wavelength of 365 nm and 254 nm. The emission between 200 and 800 nm were recorded. 

Synthesis 1. 1 was prepared according to literatures1-5 with modifications. To a 50 mL flask was 

added 2,6-dibromopyridine (2.0 g, 8.4 mmol, 1 equiv.), CuI (0.032 g, 0.17 mmol, 0.02 equiv.) and 

Pd(PPh3)4 (0.195 g, 0.17 mmol, 0.02 equiv.), then evacuated at room temperature for 10 min and 

flushed with N2, and 15 mL THF and 15 mL DIPA were added via a syringe under N2. After freeze 

degassing (3x), TMS-acetylene (2.92 mL, 21.1 mmol, 2.5 equiv.) was added via a syringe in a 

counterflow of N2. The reaction mixture was stirred at 50 °C for 6 h and after consumption of 

2,6-dibromopyridine indicated by TLC monitoring (CH2Cl2/hexane 1/1) the mixture was cooled 

down to room temperature and the solvent was removed. Purification using column 

chromatography (CH2Cl2/hexane 1/1) gave 2,6-bis(trimethylsilylethynyl)pyridine 1 (1.98 g, 8.13 

mmol, 98% yield) as white powder. 1H NMR (400 MHz , CDCl3): δ = 7.58 (1H, t, J = 8.0 Hz, 

CAr-H), 7.37 (2H, d, J = 8.0 Hz, CAr-H), 0.25 (18H, s, CH3). 
13C NMR (400 MHz, CDCl3): δ = 

143.4 (2C), 136.2, 126.7 (2C), 103.3 (2C), 95.4 (2C), -0.34 (6C). 

Synthesis 2. 2 was prepared according to literatures1-5 with modifications. To a flask was added 

1 (1.98 g, 8.13 mmol, 1 equiv.), K2CO3 (3.36 g, 24.4 mmol, 3 equiv.), methanol (15 mL) and 

diethyl ether (15 mL). The reaction was stirred at room temperature for 4 h and then additional 

diethyl ether (20 mL) and deionized water (30 mL) were added. After extracting with diethyl ether 

and deionized water for 3 more, the organic phase was collected and the solvent was removed. 

Purification using column chromatography (CH2Cl2/hexane 2/3) gave 2,6-bis(ethynyl)pyridine 2 

(0.68 g, 5.37 mmol, 66% yield). 1H NMR (400 MHz , CDCl3): δ = 7.65 (1H, t, J = 7.8 Hz, CAr-H), 

7.37 (2H, d, J = 7.8 Hz, CAr-H), 3.16 (2H, s, CCH). 13C NMR (400 MHz, CDCl3): δ = 142.7 (2C), 

136.6, 127.1 (2C), 82.1 (2C), 77.8 (2C). 
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Synthesise 3. 3 was prepared according to literatures1-5 with modifications. To a mixture of 

3-bromo-1-propene (5.0 g, 41.33 mmol, 1 equiv.), sodium azide (8.06 g, 123.99 mmo, l.3 equiv.) 

and DMF (30 mL) was added. After stirring at room temperature for 1 day, the product was 

extracted with CH2Cl2/H2O (3x). The combined organic phases were dried by rotary evaporator at 

the temperature below 10 oC gave 3-azido-1-propene 3 (2.81 g, 33.82mmol, 81% yield). 1H NMR 

(400 MHz , CDCl3), δ = 5.90 (1H, ddt, J = 16.8, 9.2, 7.2 Hz, CH=CH2), 5.35 (1H, d, J = 16.8 Hz, 

CH=CH2), 5.18 (1H, d, J = 9.2 Hz, CH=CH2), 3.97 (2H, d, J = 7.2 Hz, CH2). 
13C NMR (400 MHz, 

CDCl3): δ = 131.3, 119.1, 53.3. 

Synthesis 4. 4 was prepared according to literatures1-5 with modifications. A solution of 2 (1.0 g, 

7.86 mmol, 1 equiv.), 3 (1.632 g, 19.66 mmol, 2.5 equiv.), CuSO4·5H2O (0.39 g, 1.57 mmol, 0.2 

equiv.), sodium ascorbate (0.93 g, 4.72 mmol, 0.6 equiv.) and pentamethyldiethylenetriamine 

(PMDTA) (0.409 mL, 3.94 mmol, 0.5 equiv.) in a 1:1 mixture of EtOH:H2O was stirred at room 

temperature for 1 day. After removal of the solvents in vacuo, the crude product was purified by 

column chromatography (CH2Cl2:acetone, 3:1) to afford 4 (1.9 g, 6.49 mmol, 80% yield). 1H 

NMR (400 MHz , CDCl3): δ = 8.19 (2H, s, CAr-H), 8.12 (2H, d, J = 7.84 Hz, CAr-H), 7.89 (1H, t, J 

= 7.84 Hz, CAr-H), 6.12 (2H, ddt, J = 16.4, 10.3, 6.2 Hz, CH=CH2), 5.38-5.45 (4H, m, CH=CH2), 

5.08 (4H, d, J = 6.2 Hz, CH2). 
13C NMR (400 MHz, CDCl3): δ = 150.0 (2C), 148.5 (2C), 137.8, 

131.0 (2C), 122.0 (2C), 120.4 (2C), 119.4 (2C), 52.8 (2C). HRMS(ESI):m/z[M]:calced for 

[C15H15N7]
+ 293.1389, found for 293.1389. 

 Synthesis diacryloyl PTHF 5. A mixture of PTHF (Mn = 2000, 6.0 g, 3.0 mmol, 1.0 equiv.) 

and triethylamine (2.54 mL, 30 mmol, 10 equiv.) in dichloromethane (30 mL) were sealed in a 

flask (100 mL) and acryloyl chloride (4.21 mL, 30 mmol, 10 equiv.) was added. The mixture was 

stirred at room temperature for 1 day followed by precipitation in diethyl ether. After the removal 

of solvents in vacuo, the raw product was purified by chromatography to obtain diacryloyl PTHF 

5 (3.0 g, 1.5 mmol, 50% yield). 1H NMR (400 MHz , CDCl3, Me4Si): δ (ppm) = 6.42 (2H, d, J = 

16.5 Hz, CH=CH2), 6.14 (2H, dd, J = 16.5, 10.8 Hz CH=CH2), 5.84 (2H, d, J = 10.8 Hz, 

CH=CH2), 4.21 (4H, t, J = 6.5 Hz, COOCH2), 3.40-3.50 ((4n+4)H, m, OCH2), 1.60-1.70 ((4n+8)H, 

m, CH2).
 13C NMR (400 MHz, CDCl3): δ = 166.3 (2C), 130.5 (2C), 128.6 (2C), 70.6 (2n+2), 64.4 

(2C), 26.5 (2n+4). 

 Synthesis bis-thiol functionalized PTHF 6. 1,2-ethanedithiol (840 L, 10 mmol, 10.0 equiv.) 
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and 10 μL n-hexylamine as catalyst were charged into a flask and the mixture was evacuated at 

RT and flushed with N2 three times. Then 2.0 g (1.0 mmol, 1.0 equiv.) diacryloyl PTHF dissolved 

in 20 mL dichloromethane was added dropwise via a syringe under N2.The reaction mixture was 

stirred at RT for 1.5 h. The crude product was then purified by dialysis under to afford the 

bis-thiol functionalized PTHF 6 (1.6 g, 0.8 mmol, 80% yield). 11H NMR (CDCl3, 400 MHz): δ 

(ppm) = 4.15 (4H, t, J = 6.5 Hz), 3.35-3.50 ((4n+4)H, m, OCH2), 3.0-3.05 (4H, m, CH2SH), 

2.75-2.95(8H, m, SCH2), 2.60-2.65 (4H, m, COCH2), 1.55-1.70 ((4n+8)H, m, CH2), 1.49 (2H, t, J 

= 7.8 Hz). 13C NMR (400 MHz, CDCl3): δ = 171.8 (2C), 70.6 ((2n+2)C), 64.7 (2C), 40.1, 38.5, 

34.9, 31.6, 31.1,27.6, 27.1((2n+4)C), 26.5, 22.4. 
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Scheme S1 Synthesis of bis-ene functionalized BTP ligand 4 using CuAAC click chemistry. 

 

 

Scheme S2 Synthesis of ligand macromolecule via thiol-ene click chemistry. 
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Fig. S1 1H NMR of 1 in CDCl3. 
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Fig. S2 13C NMR of 1 in CDCl3. 
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Fig. S3 1H NMR of 2 in CDCl3. 

 

200 150 100 50 0

δ/ppm
 

Fig. S4 13C NMR of 2 in CDCl3. 
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Fig. S5 1H NMR of 3 in CDCl3. 
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Fig. S6 13C NMR of 3 in CDCl3. 
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Fig. S7 1H NMR of 4 in CDCl3. 
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Fig. S8 13C NMR of 4 in CDCl3. 
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Fig. S9 1H NMR of 5 in CDCl3. 
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Fig. S10 13C NMR of 5 in CDCl3. 
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Fig. S11 1H NMR of 6 in CDCl3. 
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Fig. S12 13C NMR of 6 in CDCl3. 
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Fig. S13 1H NMR of 7 in CDCl3. 
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Fig. S14 13C NMR of 7 in CDCl3. 
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Fig. S15 GPC trace of the ligand macromolecule 7. 
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Fig. S16 FTIR spectra of 4, 6 and the ligand macromolecule 7. 

 

The disappearance of ene absorption peak at 3087 cm-1 is a good indication of the successful 

thiol-ene reaction.  
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Fig. S17 High resolution mass spectroscopy of 4.  
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Fig. S18 MALDI mass spectroscopy of 6.  

 

A spectrum of intense peaks at lower masses and a ‘tailing off’ of intensities at higher masses is 

typical MALDI behavior for a polymer of high polydispersity.6 
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Fig. S19 stress strain curves of Fig. 2 at small strain. The control sample denotes films made from 

the ligand macromolecule 7 only. 
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Fig. S20 Stress-strain relationships of films containing different stoichiometric ratios of Zn2+: Eu3+: 

Tb3+ indicated in the legend. 
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Table S1 Tensile modulus, tensile strength, fracture strain and toughness of films containing 

different stoichiometric ratios of Zn2+: Eu3+: Tb3+ 

Sample Tensile modulus 

(KPa) 

Tensile strength 

(KPa) 

Fracture strain 

(%) 

Toughness (KPa) 

50:50:0 203 ± 16 178 ± 31 1800 ± 270 2010 ± 670 

50:0:50 243 ± 51 231 ± 2 1700 ± 180 2740 ± 320 

0:50:50 154 ± 16 136 ± 11 1700 ± 350 1560 ± 410 
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Fig. S21 SAXS of Eu3+ (0:100:0) and Zn2+ (100:0:0) containing films at varied temperatures (25 

oC, 50 oC and 80 oC) 
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Fig. S22 WXRD of films containing different metal ions as well as the control sample. The 

control sample denotes films made from the ligand macromolecule 5 only. 
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Fig. S23 Strain sweep tests at 60 oC to break up the network formation of the 

metal-supramolecular complex for Zn2+ (100:0:0) and Eu3+ (0:100:0) films. 
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Fig. S24 Fluorescent spectroscopy of films containing different metal ions as shown in the legend 

under different UV excitations (a) 254 nm and (b) 365 nm. The control sample denotes films made 

from the ligand macromolecule 7 only. 
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Fig. S25 Self-healing of metallo-supramolecular gel with only Tb3+ (0:0:100). (a) Fresh gel 

swollen in toluene (250 mg·mol-1); (b) Gel was cut into two pieces; (c) Cut gel pieces were 

stacked up before self-healing; (d) and (e) Stacked gels subjected to self-healing under saturated 

toluene atmosphere for 20 h; (f) The healed gel was then subjected to stretching. Images were 

taken under UV light (254 nm). 
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Fig. S26 Self-healing of metallo-supramolecular gel with only Tb3+ (0:0:75, off-stoichiometry 

metal ion concentration). (a) Fresh gel swollen in toluene (400 mg·mol-1); (b) Gel was cut into two 

pieces; (c) Cut gel pieces were stacked up before self-healing; (d) Stacked gels subjected to 

self-healing under saturated toluene atmosphere for 20 h. Images were taken under UV light (254 

nm). The gel was prepared with higher concentration than that of 0:0:100 due to the lower metal 

ion concentration. The original and the healed 0:0:75 were both more brittle than the healed 

0:0:100. 
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