One-pot Synthetic Strategy *via* Tandem Suzuki/Heck Reactions for the Construction of Luminescent Microporous Organic Polymers

Libo Sun, Yongcun Zou, Zhiqiang Liang,* Jihong Yu* and Ruren Xu

State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin

University, Changchun, 130012, P. R. China Email: liangzq@jlu.edu.cn; jihong@jlu.edu.cn

EXPERIMENTAL SECTION

$$MeO \longrightarrow I + MeO \longrightarrow BF_{3}K \xrightarrow{Pd(PPh_{3})_{4}, K_{2}CO_{3}} MeO \longrightarrow MeO \longrightarrow MeO$$

4-Iodoanisole (0.150 g, 0.64 mmol), PVTFB (0.103g, 0.77 mmol), potassium carbonate (0.177g, 1.28 mmol) and DMF (3 mL) were added to a reaction tube. After the system was evacuated and filled up with nitrogen for 3 times, the catalyst Pd(PPh₃)₄ (0.025 g, 0.02 mmol) was added and the same evacuation process was done. Then the system was kept at 60 °C and stirred for about 12 h. The reaction was quenched with water, extracted with ethyl acetate, washed with brine, and dried over MgSO₄. The product was obtained through flash column chromatography (petroleum ether as the eluate). Only 4-methoxystyrene was formed and 1,2-bis(4-methoxyphenyl)ethene was not observed. The ¹H NMR spectrum shows the ratio of 4-methoxystyrene/4-iodoanisole is ca. 3.9:1. These results indicate that only Suzuki reaction takes place at 60 °C in this tandem reaction system.

Fig. S1 N₂ adsorption-desorption isotherms measured at 77K for **LMOP-9**. The numbers 1-4 inset represent the polymers produced through several conditions, which are listed in **Table S1**.

Fig. S2 The TG curves of LMOPs under N₂.

Fig. S3 Scanning electron microscope images for LMOP-7 (a), LMOP-8 (b), LMOP-9 and LMOP-10e (d) at different magnifications. The samples were sputter-coated with gold before analysis.

Fig. S4 Transmission electron microscopy images for LMOP-7 (a), LMOP-8 (b), LMOP-9 (c) and LMOP-10e (d).

Fig. S5 FT-IR spectra of potassium vinyltrifluoroborate (PVTFB), aromatic halides and LMOPs: (a) PVTFB, TBPE and LMOP-7; (b) PVTFB, TBPM and LMOP-8; (c) PVTFB, TIPA and LMOP-9; (d) PVTFB, TBPE, TBPM and LMOP-10e.

Fig. S6 FT-IR spectra of LMOPs.

Fig. S8 The pore size distribution of LMOPs calculated by the NLDFT method.

Fig. S9 UV-vis absorption spectra for LMOPs in solid state (a), ethanol (b).

Fig. S10 Luminescent spectra for LMOPs in the solid state (blue) and ethanol (0.05 mg/mL, black).

Fig. S11 UV-vis absorption spectra for **LMOP-10a-e** (TBPE:TBPM = 1:99, 5:95, 15:85, 30:70, 50:50) in solid state (a) and ethanol (b).

Fig. S12 (a) Luminescent spectra of LMOP-10a-e (TBPE:TBPM = 1:99, 5:95, 15:85, 30:70, 50:50) in ethanol. (b) The emission spectra for mechanically ground mixture of LMOP-7 and LMOP-8 (1:1) in the solid state ($\lambda_{ex} = 350$ nm) and ethanol ($\lambda_{ex} = 360$ nm).

Fig. S13 The normalized luminescent intensity of **LMOPs** (a: **LMOP-7**, b: **LMOP-8**, c: **LMOP-9**, d: **LMOP-10e**) in ethanol upon addition of ca. 46.5 μM different analytes (DNCB: 2,4-dinitrochlorobenzene; DNT: 2,4-dinitrotoluene; NT: 4-nitrotoluene; PA: picric acid).

Fig. S14 The normalized luminescent intensity of LMOPs in ethanol upon addition of ca. 46.5 μ M PA.

Entry	Conditions	$S_{\rm BET}/{ m m}^2~{ m g}^{-1}$
1	Pd(PPh ₃) ₄ +K ₂ CO ₃ +DMF	318.32
2	Pd(PPh ₃) ₄ +K ₂ CO ₃ +DMSO	33.99
3	Pd(PPh ₃) ₄ + Diisopropylamine +DMSO	225.77
4	Pd(PPh ₃) ₄ +Cs ₂ CO ₃ +DMSO	148.60

Table S1 BET surface areas of LMOP-9 under different synthetic conditions.

Table S2 EDX analyses of LMOPs.

	wt. %				at. %			
LMOPs	С	Br	Ι	Pd	С	Br	Ι	Pd
LMOP-7	94.58	2.75	-	1.35	98.85	0.43	-	0.16
LMOP-8	92.36	5.78	-	1.05	98.62	0.93	-	0.13
LMOP-9	90.56	-	1.05	1.17	94.12	-	0.10	0.14
LMOP-10e	93.45	0.10	-	1.55	97.60	0.02	-	0.18

Table S3 Texture properties of LMOPs.

LMOPs	$S_{\rm BET}/{\rm m}^2~{\rm g}^{-1}$	$S_{\text{Langmuir}}/\text{ m}^2\text{ g}^{-1}$	$S_{\rm micro}/{\rm m}^2{\rm g}^{-1}$	V_{total}^{a} / m ³ g ⁻¹	$V_{\rm micro}^{b}/{\rm m}^3{\rm g}^{-1}$
LMOP-7	488	633	153	0.444	0.067
LMOP-8	639	932	336	0.601	0.153
LMOP-9	318	429	169	0.251	0.077
LMOP-10e	487	658	198	0.375	0.089

^{*a*} Total volume at P/Po = 0.97. ^{*b*} The micropore volume calculated from *t*-plot method.