Electronic Supplementary Information

Precise synthesis of rod-coil type miktoarm star copolymer containing poly(*n*-hexyl isocyanate) and aliphatic polyester

Toshifumi Satoh^{1,*}, Naoki Nishikawa², Daisuke Kawato², Daichi Suemasa², Sungmin Jung³, Young Yong Kim³, Moonhor Ree^{3,*}, and Toyoji Kakuchi^{1,*}

¹Fucluty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

²Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan

³Department of Chemistry, Division of Advanced Materials Science, Pohang Accelerator Laboratory, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Polymer Research Institute, and BK School of Molecular Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea

Corresponding Authors:

*E-mail satoh@poly-bm.eng.hokudai.ac.jp (T. Satoh), ree@postech.ac.kr (M. Ree), and kakuchi@poly-bm.eng.hokudai.ac.jp (T. Kakuchi).

PHIC-N ₃		PHIC macroinitiators				
$M_{n,NMR}^{b}$	$M_{\rm w}/M_{\rm n}^{\ c}$	Structure	$M_{n,NMR}^{b}$	$M_{\rm w}/M_{\rm n}^{\ c}$		
3,000	1.07	PHIC-OH	3,100	1.07		
5,000	1.06		5,100	1.06		
10,300	1.13		10,300	1.13		
11,400	1.18		11,400	1.19		
3,000	1.07	PHIC-(OH) ₂	3,100	1.07		
5,000	1.06		5,100	1.06		
10,900	1.10		10,900	1.13		
11,300	1.18		11,300	1.19		
3,000	1.07	PHIC-(OH) ₃	3,200	1.07		
5,000	1.07		5,200	1.06		
9,600	1.16		9,600	1.16		
11,300	1.19		11,300	1.18		

Table S1. Synthesis of PHIC macroinitiators (PHIC-OH, PHIC-(OH)₂, and PHIC-(OH)₃) via CuAAC reaction of PHIC-N₃ with ethynyl alcohol derivatives.^{*a*}

^{*a*} Synthesis conditions: solvent, dry THF; catalyst, CuCl, PMDETA; [ethynyl derivatives]/[PHIC-N₃]/[CuCl]/[PMDETA] = 3.5/1.0/3.0/6.0; reaction time, 48 h; temp., r.t. ^{*b*} Determined by ¹H NMR spectrum in CDCl₃. ^{*c*} Determined by SEC in THF using PSt standards.

Polymer	$M_{n,NMR}^{b}$ (M_{w}/M_{n}^{c})	$f_{\mathrm{PHIC}}{}^d$	CHCl ₃	THF	DMF	Hexane
PLLA	10,200 (1.08)	_	0	\bigcirc	\bigcirc	×
PCL	10,500 (1.04)	_	0	\bigcirc	\bigcirc	×
PHIC	10,400 (1.11)	1.00	0	0	×	\bigcirc
PHIC-b-PLLA	19,200 (1.07)	0.59	0	0	0	×
PHIC- <i>b</i> -PLLA ₂	20,700 (1.12)	0.59	0	\bigcirc	\bigcirc	×
PHIC- <i>b</i> -PLLA ₃	19,700 (1.08)	0.54	\bigcirc	\bigcirc	\bigcirc	×
PHIC-b-PCL	20,900 (1.07)	0.53	0	0	0	×
PHIC- <i>b</i> -PCL ₂	22,200 (1.17)	0.53	\bigcirc	\bigcirc	\bigcirc	×
PHIC- <i>b</i> -PCL ₃	20,600 (1.09)	0.50	\bigcirc	\bigcirc	\bigcirc	×

Table S2. Solubility of PHIC-*b*-PLLA_{1~3}, PHIC-*b*-PCL_{1~3}, and homopolymers a

^{*a*} Conditions: temp., r.t.; concentration, 0.1 (g·L⁻¹); \circ , soluble; ×, insoluble. ^{*b*} Determined by ¹H NMR spectrum in CDCl_{3.} ^{*c*} Determined by SEC in THF using PSt standards. ^{*d*} $f_{PHIC} = (M_{n,NMR,PHIC} \times d_{PLLA \text{ or PCL}})/(M_{n,NMR,PHIC} \times d_{PLLA \text{ or PCL}} + M_{n,NMR,PLLA \text{ or PCL}} \times d_{PHIC}), d_{PHIC} = 1.0, d_{PLLA} = 1.20, and d_{PCL} = 1.15.$

Figure S1. SEC traces of PHIC-(OH)₂ (a, $M_{n,NMR} = 5,100$, $M_{w,SEC} = 6,100$, $M_w/M_n = 1.06$) and PHIC-(OH)₃ (b, $M_{n,NMR} = 5,200$, $M_{w,SEC} = 5,900$, $M_w/M_n = 1.06$) (flow rate, 1.0 mL·min⁻¹; solvent: THF).

Figure S2. FT-IR spectra of PHIC-N₃ (upper), PHIC-(OH)₂ (middle) and PHIC-(OH)₃(lower).

Figure S3. SEC traces detected by RI detector (eluent, THF; flow rate, 1.0 mL·min⁻¹). a) PHIC-*b*-PLLA₂ (solid line, $M_{n,NMR} = 20,000$, $M_{w,SEC} = 23,300$, $M_w/M_n = 1.09$) and PHIC-(OH)₂ (dashed line, $M_{n,NMR} = 5,100$, $M_w/M_n = 1.06$), b) PHIC-*b*-PLLA₃ (solid line, $M_{n,NMR} = 20,200$, $M_{w,SEC} = 22,800$, $M_w/M_n = 1.08$) and PHIC-(OH)₃ (dashed line, $M_{n,NMR} = 5,200$, $M_w/M_n = 1.06$).

Figure S4. SEC traces detected by RI detector (eluent, THF; flow rate, 1.0 mL·min⁻¹). a) PHIC-*b*-PCL₂ (solid line, $M_{n,NMR} = 21,700$, $M_{n,SEC} = 35,700$, $M_w/M_n = 1.06$) and PHIC-(OH)₂ (dashed line, $M_{n,NMR} = 5,500$, $M_w/M_n = 1.10$), b) PHIC-*b*-PCL₃ (solid line, $M_{n,NMR} = 23,600$, $M_{n,SEC} = 37,600$, $M_w/M_n = 1.09$) and PHIC-(OH)₃ (dashed line, $M_{n,NMR} = 5,600$, $M_w/M_n = 1.11$).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S5. DSC results of PCL and PHIC-*b*-PCL_{1~3}, which were measured during heating run with a rate of 10.0 °C min⁻¹ after quenched to -100 °C from the melt: (a) PCL ($M_n = 10,000$); (b) PHIC-*b*-PCL ($M_{n,NMR} = 22,200, M_w/M_n = 1.17, f_{PHIC} = 0.55$); (c) PHIC-*b*-PCL₂ ($M_{n,NMR} = 23,000, M_w/M_n = 1.12, f_{PHIC} = 0.53$); (d) PHIC-*b*-PCL₃ ($M_{n,NMR} = 22,200, M_w/M_n = 1.14, f_{PHIC} = 0.54$).

Figure S6. DSC results of PCL and PHIC-*b*-PCL_{1~3}, which were measured during quenching from from the melts: (a) PCL ($M_n = 10,000$); (b) PHIC-*b*-PCL ($M_{n,NMR} = 22,200, M_w/M_n = 1.17, f_{PHIC} = 0.55$); (c) PHIC-*b*-PCL₂ ($M_{n,NMR} = 23,000, M_w/M_n = 1.12, f_{PHIC} = 0.53$); (d) PHIC-*b*-PCL₃ ($M_{n,NMR} = 22,200, M_w/M_n = 1.14, f_{PHIC} = 0.54$).