Supporting Information

Micellar-Cluster Association of Ureidopyrimidone Functionalized Monochelic Polybutadiene

Sachin Bobade,^a Thomas Malmgren^a and Durairaj Baskaran^{a,b,*}

^aDepartment of Chemistry, University of Tennessee, Knoxville, TN 37996, USA ^bAZ-Electronic Materials USA Corp, 70 Meister Avenue, Somerville, NJ 08807

Figure S1: ¹H NMR spectrum of UPy-Synthon

^{*} Corresponding author. e-mail: <u>durairaj.baskaran@azem.com</u> or <u>baskaran@utk.edu</u>

^{*} Corresponding author. e-mail: <u>durairaj.baskaran@azem.com</u> or <u>baskaran@utk.edu</u>

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Sachin et al., Micellar-cluster association...

Figure S2: Progress of coupling reaction between UPy-NCO and MPBd-OH-1 in the presence of trace amounts of co-distilled stabilizer ethanol in chloroform. The arrow points to the disappearance of terminal –CH₂- group of MPBd-OH via coupling.

Figure S3: Thermogravimetric analysis of MPBd-UPy-1-4. Different steps (1-3) are indicative of end-group and main segment cleavage and decompositions.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is o The Royal Society of Chemistry 2013

Sachin et al., Micellar-cluster association...

Figure S4: Normalized concentration dependent (1-5 mg/mL) GPC eluograms of MPBd-UPy-2 (a) and in presence of 5% triethylamine (b).

Sample	MPBd-OH			MPBd-UPy		
(mg/mL)	$M_{\rm n SEC,}$	<i>M</i> _{n(max)}	$M_{ m w}/M_{ m n}$	M _n ,	M _{n,}	$M_{ m w}/M_{ m n}$
	(g/mol)	(g/mol)		sec [°] g/mol	_{NMR} " g/mol	
1	1,720	1,810	1.048	1,890	2,120	1.064
2	1,700	1,780	1.049	1,920	2,240	1.074
3	1,680	1,760	1.050	1,980	2,330	1.068
4	1670	1,750	1.051	2,020	2,470	1.077
5	1670	1,750	1.052	2,590	2,590	1.077

Table S1: Concentration dependent GPC of the MPBd-UPy-2 and MPBd-OH –2

Figure S5: Solution viscosity of the MPBd-UPy-1 in toluene. A linear region at higher concentration and non-linear region at lower concentration can be seen. An upward increase of viscosity at low concentration shows behavior like polyelectrolyte in water.

Figure S6: Repetition experiments of the mixture of MPBd-UPy-4 with MPBd-OH (55 wt. %) in toluene as an attempt to find error limits as requested by the reviewer #2 during the revision. The sample which was stored in a refrigerator over 6 months was measured again for this purpose.

Figure S7: Representive histograms of the a) MPBd-UPy-4 and b) MPBd-(UPy)₂-1 at 25°C

Figure S8: Average population of larger size micelles ($R_{h,average}$) in a toluene solution of MPBd-(UPy)₂ at different angles. Sample concentration was 35 mg/mL, and analyzed at 25 °C

Figure S9: Plot of glass transition (T_g) temperature v_s molecular weight of polybutadiene

Figure S10: Effect of sample weight on the DSC endothermic peak MPBd-UPy-2

Sample	Heating	1 st peak		2 nd peak	
	cycle	$T_{1_{\text{deagg.}}}$	Enthalpy	$T_{2\text{deagg}}$	Enthalpy
		(°C)	(J/g)	(°C)	(J/g)
	1 st	6.49	1.122	70.87	18.980
	2^{nd}	6.69	1.245	70.62	18.430
MPBd-UPy-1	$3^{\rm rd}$	7.24	1.147	70.67	18.310
	1^{st}	20.78	0.495	52.52	6.258
	2^{nd}	19.60	0.483	51.00	5.598
	3r ^d	19.20	0.462	50.61	5.80
MPBd-UPy-2					
MDDd LIDy 2	1^{st}	1.69	0.273	46.77	6.564
	2^{nd}	-2.03	0.160	48.72	6.280
WIF DU-OF y-3	$3^{\rm rd}$	-2.40	0.138	48.43	5.980
MDRA LIDy A	1 st	None	None	48.02	2.642
	2^{nd}	None	None	51.55	2.730
1011 Du-01 y-4	3 rd	None	None	53.52	2.519

Table S2: Enthalpy values of MPBd-UPy

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Sachin et al., Micellar-cluster association...

Figure S11: DSC profile of MPBd-UPy, 7 kg/mol with ~94 % 1,2 vinyl contents; a) after first run, b) after ~3 months at 30 °C.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is © The Royal Society of Chemistry 2013

Sachin et al., Micellar-cluster association...

Polymer Chemistry (RSC)

Figure S12: Time dependent morphology of MPBd-UPy-4 (from left to right, 15 min, 24 h, and 48 h after drop coating a thin film on freshly cleaved mica). The images were taken without changing the position of the sample in the AFM over 48 h. The size of the fibrous looking associated micellar clusters changes gradually over time indicating surface mobility of the associates induced by PBd segments (low T_g) at room temperature. Micellar cluster sizes are in the range of ~ 25-27 nm.