Electronic Supplementary Information for

An Amphiphilic Conjugated Polymer as an Aggregation-Based Multifunctional Sensing Platform with Multicolor Fluorescence Response

Yinyin Bao,^b Taisheng Wang,^a Qianbiao Li,^a Fanfan Du,^a Ruke Bai, *^a Mario Smet,^b Wim Dehaen^b

^aCAS Key Laboratory of Soft Matter Chemistry, Department of Polymer, Science and Engineering, University of Science and Technology of China, Hefei, P. R. China 230026; ^bDepartment of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.

1. FTIR data.

Figure S1. FTIR spectra of P0 and P1.

2. UV-visible Absorbance Analysis.

Figure S2. UV-vis absorbtion spectra of **P1** in dioxane, dioxane/H₂O (4:1), and dioxane/H₂O (1:9). [**P1**] = 8.0×10^{-6} M.

Figure S3. UV-vis absorbtion spectra of P1 in dioxane/H₂O (4:1) mixed solvents change with increasing the concentration of Ag⁺ ions (0-6.25 equiv). [P1] = 8.0×10^{-6} M.

Figure S4. UV-vis absorbtion spectra of P1 in dioxane/H₂O (4:1) mixed solvents change with increasing the concentration of Hg²⁺ ions (0-6.25 equiv). [P1] = 8.0×10^{-6} M.

3. Polymerization Results.

Table S1. Polymerization Results and Characterization of P0 and P1

Polymer	${ m M_w}^a$	$M_n^{\ a}$	PDI ^a	Absorbance ^b (λ_{max}, nm)	Emission ^b (λ_{max}, nm)	Quantum ^c Yield
P0	11600	10700	1.09	310, 450	416, 560	0.17
P1	17836	15015	1.20	308, 438	420, 560	0.12

^{*a*} Estimated from GPC (eluent: DMF, polystyrene standards). ^{*b*} All spectra were recorded in dioxane at a concentration of polymer-bound biimidazole of 8.0 μ M. Emission spectra were measured with excitation at 338 nm. ^{*c*} The quantum yields of **P0** and **P1** were determined using Quinine bisulfate in 0.05 M H₂SO₄ solution as the standard.

size / nm -

Figure S5. Hydrodynamic radius distribution of P1 in (a) dioxane and (b) dioxane/H₂O (1:9). [P1] = 8.0×10^{-5} M.

70 80

size /nm

5. SEM.

Figure S6. SEM images of **P1**. a) and b): in dioxane; c) and d): in dioxane/H₂O (1:9); e) and f): interaction with 2.5 equiv Ag^+ ions in dioxane/H₂O (4:1); g) and h) interaction with 2.5 equiv Hg^{2+} ions in ethanol/H₂O (4:1). [**P1**] = 8.0×10^{-5} M.

6. Fluorometric Analysis.

Figure S7. Fluorescence spectra of P1 in various organic solvents. $[P1] = 8.0 \times 10^{-6} \text{ M}.$

Figure S8. Fluorescence spectra and of **P0** in dioxane-H₂O mixed solvents change with increasing water contents (0-20%). $\lambda_{ex} = 338$ nm. [**P0**] = 8.0×10^{-6} M.

Figure S9. Emission intensity ratios I_{420nm}/I_{560nm} of **P0** and **P1** in dioxane-H₂O mixed solvents change with increasing water contents. $\lambda_{ex} = 338 \text{ nm} (0-20\%)$. [**P0**] = [**P1**] = $8.0 \times 10^{-6} \text{ M}$.

Figure S10. Fluorescence spectra of P1 in dioxane, dioxane/H₂O (4:1), and dioxane/H₂O (1:9). $\lambda_{ex} = 338$ nm. [P1] = 8.0×10^{-6} M.

Figure S11. (a) Fluorescence spectra and (b) emission intensity ratios I_{420nm}/I_{565nm} of **P1** in THF-H₂O mixed solvents change with increasing water contents (0-20%). $\lambda_{ex} = 338 \text{ nm}$. [**P1**] = $8.0 \times 10^{-6} \text{ M}$.

Figure S12. Fluorescence spectra of **P1** in (a) CH₃CN-H₂O (b) isopropanol-H₂O (c) n-propanol-H₂O (d) methanol-H₂O (e) ethanol-H₂O (f) DMSO-H₂O mixed solvents change with increasing water contents (0-15% for a,b,c and 0-10% for d,e,f). $\lambda_{ex} = 338$ nm. [**P1**] = 8.0×10^{-6} M.

Figure S13. Intensity ratio I_{560}/I_{420} of **P1** (8.0 μ M) in MES (0.01 M) solution (dioxane/H₂O = 4:1, v/v, pH 6.0) as a function of Ag⁺ concentration. $\lambda_{ex} = 338$ nm.

Figure S14. Fluorescence spectra of (a) **P0** and (b) **P1** in dioxane/H₂O (4:1), (c) **P1** in dioxane/H₂O (7:3), (d) **P1** in dioxane/H₂O (6:4), (e) **P1** in dioxane/H₂O (5:5) before and after interaction with 40 μ M Ag⁺ ions. $\lambda_{ex} = 338$ nm. [**P0**] = [**P1**] = 8.0 × 10⁻⁶ M.

Figure S15. Fluorescence spectra of of **P1** (8.0 μ M) in MES (0.01 M) solution (dioxane/H₂O = 4:1, v/v, pH 6.0) in the presence 10.0 equiv of various metal ions. λ_{ex} = 338 nm.

Figure S16. Intensity ratio I_{565}/I_{428} of **P1** (8.0 μ M) in MES (0.01 M) solution (ethanol/H₂O = 4:1, v/v, pH 6.0) as a function of Hg²⁺ concentration. $\lambda_{ex} = 338$ nm.

Figure S17. Fluorescence spectra of of **P1** (8.0 μ M) in MES (0.01 M) solution (ethanol/H₂O = 4:1, v/v, pH 6.0) in the presence 10.0 equiv of various metal ions. λ_{ex} = 338 nm.

Figure S18. a) Intensity of **P1**-Hg²⁺ (8.0 μ M) in MES (0.01 M) solution (ethanol/H₂O = 4:1, v/v, pH 6.0) as a function of Cys concentration. b) Selectivity profiles in the presence of 10 equiv various amino acids. 1, Gly; 2, Pro; 3, Trp; 4, Ser; 5, Phe; 6, Ala; 7, Lys; 8, Tyr; 9, Ile; 10, Gly; 11, Hyp; 12, Thr; 13, Met; 14, Asp; 15, Val; 16, Cys. λ_{ex} =338 nm.

Figure S19. Fluorescence spectra of of **P1** (8.0 μ M) in MES (0.01 M) solution (ethanol/H₂O = 4:1, v/v, pH 6.0) in the presence 5.0 equiv of different Hg²⁺ salts. λ_{ex} = 338 nm.

Figure S20. Fluorescence spectra of of **P1**-Hg²⁺ (8.0 μ M) in MES (0.01 M) solution (ethanol/H₂O = 4:1, v/v, pH 6.0) in the presence 8.0 equiv of Cys, Hcys, and GSH. λ_{ex} = 338 nm.