Supporting Information

For

Expanding the scope of the crystallization-driven selfassembly of polylactide-containing polymers

Anaïs Pitto-Barry, Nigel Kirby, Andrew P. Dove and Rachel K. O'Reilly

Self-assembly procedure for the fast water addition:

50 mg of polymer were dissolved in THF in a 20 mL scintillation vial and the solution was stirred. Nanopure water was dropwise to the vial. The vial was closed and a needle was put through the cap to allow the slow evaporation of THF. The vial was then heated at 65 °C with stirring.

Self-assembly procedure for the slow water addition:

50 mg of polymer were dissolved in THF (0.5 mL) in a 20 mL scintillation vial and the solution was stirred. Nanopure water (2 mL) was added to the vial *via* a peristaltic pump so that the addition takes place over around 90 min. The vial was closed and a needle was put through the cap to allow the slow evaporation of THF. The vial was then heated at 65 °C with stirring.

Procedure for collect and analysis of the samples:

Vial was removed from the heating system and opened. A sample was collected (up to 200 μ L), allowed to cool down and then freeze-dried. The vial was closed again and the needle put through the cap. The powder resulting from the freeze-drying process was dissolved in nanopure water to a concentration of 0.5 mg × mL⁻¹ and stirred overnight to obtain a homogeneous solution. DLS and TEM were performed on this dilute solution. Our group has previously demonstrated that this procedure allows for a view of the original sample in the vial.^[1]

Figure S4. ¹H NMR spectrum of P4AM₂₁₃-b-PLLA₃₈ (4) (250 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of P4AM₁₆₆-b-PLLA₃₆ (5) (400 MHz, CDCl₃).

Figure S7. Dynamic light scattering data for the self-assembly of $P4AM_{213}$ -*b*-*PLLA*₃₈ (4) at different THF contents (10-30%) and heating times (27 hours: left, 51 hours: right).

Figure S8. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of P4AM₂₁₃-*b*-P*L*LA₃₈ (4) at 20 mg × mL⁻¹ in 10% THF with fast water addition after 27 hours (bottom left, $L_n = 159 \pm 58$ nm) and 51 hours (bottom right, $L_n = 173 \pm 56$ nm). A mixed phase was obtained.

Figure S9. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of P4AM₂₁₃-*b*-P*L*LA₃₈ (**4**) at 20 mg × mL⁻¹ in 20% THF with fast water addition after 27 hours (bottom left, $L_n = 224 \pm 89$ nm) and 51 hours (bottom right, $L_n = 213 \pm 114$ nm). A mixed phase was obtained.

Figure S10. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of P4AM₂₁₃-*b*-P*L*LA₃₈ (4) at 20 mg × mL⁻¹ in 30% THF after 27 hours (bottom left, $L_n = 157 \pm 62$ nm) and 51 hours (bottom right, $L_n = 212 \pm 90$ nm). A mixed phase was obtained.

Figure S11. Dynamic light scattering data for the self-assembly of P4AM₁₆₆-*b*-P*L*LA₃₆ (5) at different times (1-2 days) and polymer concentrations (10 mg × mL⁻¹: left, 20 mg × mL⁻¹: right).

Figure S12. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of P4AM₁₆₆-*b*-P*L*LA₃₆ (**5**) at 10 mg × mL⁻¹ in 20% THF with fast water addition after 1 day (bottom left, $L_n = 243 \pm 112$ nm) and 2 days (bottom right, $L_n = 246 \pm 92$ nm). A mixed phase was obtained.

Figure S13. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of P4AM₁₆₆-*b*-P*L*LA₃₆ (**5**) at 20 mgmL⁻¹ in 20% THF with fast water addition after 1 day (bottom left, $L_n = 291 \pm 155$ nm) and 2 days (bottom right, $L_n = 264 \pm 124$ nm). A mixed phase was obtained.

Figure S14. Dynamic light scattering data for the self-assembly of PDMA₂₄₈-*b*-P*L*LA₃₆ (6) at different times (1-2 days) and polymer concentrations (10 mg × mL⁻¹: left, 20 mg × mL⁻¹: right).

Figure S15. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of PDMA₂₄₈-*b*-P*L*LA₃₆ (6) at 10 mg × mL⁻¹ in 20% THF with fast water addition after 1 day (bottom left, $L_n = 236 \pm 135$ nm) and 2 days (bottom right, $L_n = 216 \pm 90$ nm). A mixed phase was obtained.

Figure S16. Histograms of the spheres (top) and cylinders (bottom) length produced from the self-assembly of PDMA₂₄₈-*b*-P*L*LA₃₆ (6) at 20 mg × mL⁻¹ in 20% THF with fast water addition after 1 day (bottom left, $L_n = 179 \pm 88$ nm) and 2 days (bottom right, $L_n = 257 \pm 103$ nm). A mixed phase was obtained.

Figure S17. TEM images of the self-assembly of P4AM₁₆₆-*b*-P*L*LA₃₆ (**5**) with a slow water addition at 20 mg \times mL⁻¹ and 20% THF at different times (1-3 days).

Figure S18. Dynamic light scattering data for the self-assembly of PEO_{454} -*b*-*PLLA*₂₈ (3) with a slow water addition at the initial starting point (left) and after 1 hour of heating (right).

Figure S19. Histogram of the cylinders length observed by TEM for the self-assembly of PEO_{454} -*b*-*PLLA*₂₈ (**3**) at 20 mg × mL⁻¹ in 20% THF with a slow water addition at different times (1-3 days). Note that the size of the few spheres did not significantly change during assembly.

Figure S20. Dynamic light scattering data for the self-assembly of $PDMA_{248}$ -*b*-PLLA₃₆ (6) with the slow addition of water at different times.

Figure S21. Histogram of the spheres (top) and cylinders (bottom) length observed by TEM for the self-assembly of PDMA₂₄₈-*b*-P*L*LA₃₆ (6) at 20 mg \times mL⁻¹ in 20% THF with slow water addition at different times (1-3 days).

Figure S22. SAXS profiles and fittings of the self-assembly process of diblocks PEO₄₅₄-*b*-PLLA₂₈ (**3**), P4AM₁₆₆-*b*-PLLA₃₆ (**5**) and PDMA₂₄₈-*b*-PLLA₃₆ (**6**) at 20 mg × mL⁻¹ in 20% THF with slow addition of water at 3 days.

Figure S23. Hydrophilic character of the polymers PDMA, P4AM and PEO determined by prediction of logP according to the degree of polymerization.

References

[1] N. Petzetakis, A. P. Dove, R. K. O'Reilly, Soft Matter, 2012, 8, 7408-7414.