Supporting Information

Direct synthesis of poly(p-phenyleneethynylene)s from calcium carbide

Nopparat Thavornsin,^a Mongkol Sukwattanasinitt^b and Sumrit Wacharasindhu^{*b}

^{*a*} Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand ^{*b*} Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Contents

	Pages
Procedure for Synthesis of dialkoxy benzene (a-h)	S2-S4
Procedure for Synthesis of aryl diiodides (1a–1f)	S4-S5
Procedure for Synthesis of poly(<i>p</i> -phenyleneethynylene)s (2a–2f)	S5-S8
¹ H and ¹³ C NMR spectra of compound a–h , 1a–f and 2a–2f	S9-S26
¹ H NMR spectra of 2a from TMS acetylene experiment	S27
Fluorescence and UV-Vis spectroscopy of 2a–2f	S28
Appearance of 2a–2f	S29
References	S30

General: All reagents were purchased from Sigma-Aldrich, Fluka® (Switzerland) or Merck® (Germany) and used without further purification. Analytical thin-layer chromatography (TLC) was performed on Kieselgel F-254 pre-coated plastic TLC plates from EM Science. Visualization was performed with a 254 nm ultraviolet lamp. Gel column chromatography was carried out with silica gel (60, 230-400 mesh) from ICN Silitech. Elemental (C, H, N) analysis was performed on PE 2400 series II (Perkin-Elmer, USA). The ¹H and ¹³C NMR spectra were recorded on a Varian 400 or Bruker 400 in CDCl₃ and DMSO- d_{6} . Chemical shifts are expressed in parts per million (δ) using residual solvent protons as internal standards: chloroform (δ 7.26 for ¹H, δ 77.00 for ¹³C) and DMSO- $d_6(\delta 2.50$ for ¹H, δ 39.52 for ¹³C). Coupling constants (J) are reported in Hertz (Hz). Splitting patterns are designated as s (singlet), d (doublet), t (triple), q (quartet), bs (broad singlet), m (multiplet). Fourier transform infrared spectra were acquired on Nicolet 6700 FT-IR spectrometer equipped with a mercurycadminum telluride (MCT) detector (Nicolet, USA). All polymer solutions were filtered through 0.45 µm syringe filters prior to use. All polymer solutions were filtered through 0.45 µm syringe filters prior to use. Polymer molecular weights were determined by Waters 600 controller chromatograph equipped two HR (waters), column (HR1 and HR4) at 35 °C and a reflective index detector (waters 2414). Tetrahydrofuran was used as an eluent with the flow rate of 1.0 mL/min (3 mg/mL sample concentrations). Sample injection volume was 50 µL. Polystyrenes (996-188,000 Da.) were used as standards for calibration. The UV-Visible spectra were obtained from Varian Cary 50 UV-Vis spectrophotometer (Varian, USA) using CHCl₃ and DMSO as a solvent. Fluorescence emission spectra were acquired by using Perkin Elmer precisely LS 45.

General procedure for preparation of 1,4-dialkoxybenzene (procedure A) (a–d):To a stirred suspension of KOH (4.5 equiv.) and hydroquinone (1 equiv.) in dried DMF or DMSO was added dropwise alkyl bromide (4 equiv.). The mixture was stirred at room temperature for overnight. The mixture was extracted three times with CH_2Cl_2 . The combined organic phase was washed with water, brine, dried over anhydrous Na_2SO_4 , concentrated *in vacuo* and purified by column chromatography to provide product.

Synthesis of 1,4-dibutoxybenzene (a)¹

Synthesis as declared in procedure A using hydroquinone (2.00 g, 18.16 mmol), *n*-butyl bromide (9.95 g, 72.64 mmol), KOH (4.58 g, 81.72 mmol) in DMF (15 mL). The mixture was poured into 300 mL of cool water and the organic layer was filtered, washed with cool water many times, and dried over a steam bath to afford **a** (3.06 g, 76%) as a light brown solid. ¹H NMR (400 MHz, CDCl₃): δ 6.82 (s, 4H), 3.92–3.89 (t, 4H), 1.77–1.70 (m, 4H), 1.52–1.43 (m, 4H), 0.98–0.94 (t, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.7, 115.9, 68.9, 32.0, 19.7, 14.3.

Synthesis of 1,4-bis(octyloxy)benzene (b)²

Synthesis as declared in procedure A using hydroquinone (2.00 g, 18.16 mmol), *n*-octyl bromide (14.03 g, 72.64 mmol), KOH (4.59 g, 81.72 mmol) in DMF (15 mL) to afford **b** (3.05 g, 50%) as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 6.81 (s, 4H), 3.91–3.87 (t, 4H), 1.78–1.71 (m, 4H), 1.47–1.40 (m, 4H), 1.32–1.28 (m, 16H), 0.90–0.86 (t, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.7, 115.9, 69.2, 32.3, 29.9, 29.9, 29.7, 26.5, 23.1, 14.6.

Synthesis of 1,4-bis(2-ethylhexyloxy)benzene (c)³

Synthesis as declared in procedure A using hydroquinone (2.00 g, 18.16 mmol), 2-ethylhexyl bromide (14.03 g, 72.64 mmol), KOH (4.59 g, 81.72 mmol) in dried DMSO (15 mL) to afford **c** (5.59 g, 92%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 4H), 3.79 (d, 4H), 1.69 (dd, 2H), 1.56–1.21 (m, 16H), 1.06–0.85 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): δ 153.7, 115.6, 71.5, 39.8, 30.8, 29.4, 24.1, 23.3, 14.3, 11.3.

Synthesis of 4-(2-ethylhexyloxy)phenol (d)

Synthesis as declared in procedure A using hydroquinone (1.00 g, 9.08mmol), 2-ethylhexyl bromide (0.58 g, 3.02 mmol), KOH (3.40 g, 60.4 mmol) in dried DMSO (10 mL) to afford **d** (0.51 g, 76%) as an colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.78 (d, 4H), 5.20 (s, 1H), 3.78 (d, 2H), 1.73–1.67 (m, 1H), 1.53–1.38 (m, 4H), 1.33–1.31 (m, 4H), 0.94–0.91 (t, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.6, 149.3, 116.1, 115.8, 71.5, 39.5, 30.5, 29.1, 23.9, 23.1, 14.1, 11.1.

Synthesis of 1-(2-ethylhexyloxy)-4-methoxybenzene (e)⁴

To a stirred solution of **d** (0.51 g, 2.31 mmol) in dried THF (15 mL) was charged with MeI (0.98 g, 6.94 mmol) and then added NaH (0.11 g, 4.62 mmol). The reaction mixture was stirred for 12 h at 70 0 C and finally dropped with MeOH (5 mL). The reaction mixture was extracted with CH₂Cl₂ (3×50) and the combined organic layers were dried over Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide **e** (0.46 g, 84%) as an colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.85 (s, 4H), 3.86-3.65 (m, 5H), 1.75–1.69 (m, 1H), 1.57–1.30 (m, 8H), 0.96–0.88 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 152.7, 152.2, 114.5, 113.6, 70.3, 54.7, 38.5, 29.6, 28.1, 22.9, 22.1, 13.0, 10.1.

Synthesis of 2-(2-methoxyethoxy)ethylmethanesulfonate (f)

To a stirred solution of Diethyleneglycol monomethylether (10.38 g, 86.31 mmol) and DMAP in CH₂Cl₂ (150 mL) was charged with triethylamine (25.00 mL, 178 mmol). The reaction mixture was stirred at 0 0 C for 10 min and then dropwise with mesylchloride (10.92 g, 95.2 mmol) which was dissolved with CH₂Cl₂ (50 mL). The reaction mixture was stirred at room temperature for 2 h. The mixture was extracted with CH₂Cl₂ (3×50) and the combined organic layers were dried over Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide **f** (15.47 g, 90%) as a light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.33 (t, 2H), 3.72 (t, 2H), 3.60 (t, 2H), 3.49 (t, 2H), 3.32 (s, 3H), 3.02 (s, 3H).

Synthesis of 1,4-bis(2-(2-methoxyethoxy)ethoxy)benzene (g)⁵

To a stirred solution of hydroquinone (1.53 g, 13.89 mmol) and KOH (2.44 g, 43.5 mmol) in DMF (30 mL) was added with **f** (5.81 g, 29.3 mmol). The reaction mixture was stirred at 60 $^{\circ}$ C for 20 h. The reaction mixture was extracted with CH₂Cl₂/0.1

M HCl and the combined organic phase was washed with water (10×100), dried over Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide **g** (4.21 g, 96%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ 6.80 (s, 4H), 4.05 (t, 4H), 3.79 (t, 4H), 3.68 (t, 4H), 3.54 (t, 4H), 3.35 (s, 6H).

Synthesis of 3,3'-(1,4-phenylenebis(oxy))dipropan-1-ol (h)⁶

To a stirred suspension of K₂CO₃ (22.6 g, 163.47mmol) and hydroquinone (3 g, 27.24mmol) in MeCN (20 mL) was added dropwise 3-chloropropan-1-ol (12.88 g, 136.23mmol). The mixture was refluxed overnight. The mixture was extracted with CH₂Cl₂ (3×200) and the combined organic layers were dried over Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide **h** (6.16 g, 100%) as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 6.83 (s, 4H), 4.09–4.06 (t, 4H), 3.87–3.84 (t, 4H), 2.05–1.99 (m, 4H), 1.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 153.0, 115.4, 66.5, 60.5, 31.9.

General procedure for preparation of 2,5-diiodo-1,4-dialkoxybenzene(procedure B) (1a–1c, 1f): To a stirred of 2,5-dialkylbenzene (1a–1c, 1f) (1 equiv.) in MeOH at temperature below 15 0 C was added dropwise iodine(I)chloride (4 equiv.) and the mixture was stirred reflux for 1 day under pressure of N₂. The mixture was extracted three times with CH₂Cl₂. The combined extract was washed with aqueous Na₂S₂O₃, water, brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide product.

Synthesis of 1,4-dibutoxy-2,5-diiodobenzene (1a)⁷

Synthesis as declared in procedure B using **a** (4.00 g, 17.99 mmol), iodine(I)chloride (12.76 g, 78.61 mmol) in MeOH (30 mL) to afford **1a** (6.29 g, 74%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 2H), 3.95–3.92 (t, 4H), 1.82–1.75 (m, 4H), 1.58–1.49 (m, 4H), 1.00–0.96 (t, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 123.2, 86.6, 70.4, 31.6, 19.6, 14.1.

Synthesis of 1,4-diiodo-2,5-bis(octyloxy)benzene (1b)^{3,7}

Synthesis as declared in procedure B using **b** (3.00 g, 8.98mmol), iodine(I)chloride (6.37 g, 39.25mmol) in MeOH (20 mL) to afford **1b** (1.89 g, 36%) as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 2H), 3.94–3.91 (t, 4H), 1.83–1.75 (m, 4H), 1.54–1.44 (m, 4H), 1.39–1.24 (m, 16H), 0.89 (t, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 152.9, 122.9, 86.4, 70.4, 31.8, 29.3, 29.2, 29.2, 26.0, 22.7, 14.1.

Synthesis of 1,4-bis(2-ethylhexyloxy)-2,5-diiodobenzene(1c)^{3,8}

Synthesis as declared in procedure B using \mathbf{c} (0.50 g, 1.49mmol), iodine(I)chloride (1.07 g, 5.96mmol) in MeOH (35 mL) to afford $\mathbf{1c}$ (0.69 g, 79%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (s, 2H), 3.80 (d, 4H), 1.72 (dt, 2H), 1.59–1.38

(m, 8H), 1.36–1.24 (m, 8H), 0.91 (t, 12H). ¹³C NMR (101 MHz, CDCl₃): δ 152.4, 121.9, 85.6, 71.9, 39.0, 30.0, 28.6, 23.5, 22.5, 13.6, 10.8.

Synthesis of1-(2-ethylhexyloxy)-2,5-diiodo-4-methoxybenzene (1d)⁹

A solution of **e** (0.15 g, 0.65 mmol), H_5IO_6 (0.07 g, 0.33mmol) and I_2 (0.33 g, 1.30 mmol) in 1.5 mL acetic acid, 1 mL sulfuric acid and 2 mL water was stirred at 70 0 C for 12 h under pressure of N_2 . After cooling, the mixture was extracted with CH₂Cl₂ (3×50). The organic layer was washed with aqueous Na₂S₂O₃, water, brine, dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by column chromatography to provide **1d** (0.19 g, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.19 (s, 1H), 7.16 (s, 1H), 3.82 (d, 5H), 1.79–1.68 (m, 1H), 1.60–1.40 (m, 4H), 1.36–1.28 (m, 4H), 0.97–0.88 (m, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.3, 153.2, 122.6, 121.7, 86.3, 85.6, 72.5, 57.3, 39.6, 30.6, 29.2, 24.1, 23.1, 14.2, 11.3.

Synthesis of1,4-diiodo-2,5-bis(2-(2-methoxyethoxy)ethoxy)benzene (1e)¹⁰

A solution of **g** (0.50 g, 1.59 mmol), H_5IO_6 (0.18 g, 0.79 mmol) and I_2 (0.80 g, 3.18 mmol) in 4.5 mL acetic acid, 3 mL sulfuric acid and 6 mL water was stirred at 70 $^{\circ}C$ for 12 h. After cooling, the mixture was extracted with CH_2Cl_2 (3×50). The organic layer was washed with aqueous $Na_2S_2O_3$, water, brine, dried over anhydrous Na_2SO_4 , concentrated *in vacuo* and purified by column chromatography to provide **1e** (0.59 g, 66%) as a white powder. ¹H NMR (400 MHz, CDCl₃): δ 7.23 (s, 2H), 4.12–4.10 (t, 4H), 3.89–3.87 (t, 4H), 3.79–3.76 (t, 4H), 3.59–3.57 (t, 4H), 3.40 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.4, 123.8, 86.6, 72.3, 71.3, 70.6, 69.8, 60.7, 59.3.

Synthesis of 3,3'-(2,5-diiodo-1,4-phenylene)bis(oxy)dipropan-1-ol (1f)¹¹

Synthesis as declared in procedure B using **h** (1.50 g, 5.64 mmol), iodine(I)chloride (4.57 g, 28.18 mmol) in MeOH (15 mL) to afford **1f** (2.64 g, 98%) as a white solid. ¹H NMR (400MHz, DMSO): δ 7.33 (s, 2H), 4.52 (s, 2H), 4.03–4.00 (t, 4H), 3.60–3.57 (t, 4H), 1.86–1.80 (m, 4H). ¹³C NMR (101 MHz, DMSO): δ 152.3, 122.4, 86.9, 66.8, 57.3, 32.1.

General procedure for polymerization of aryl diiodides (procedure C) (2a–2f)): A 100 mL round bottom flask with a magnetic stir bar was charged with aryl diiodides (1 equiv.), palladium catalyst (0.05 equiv.), copper catalyst (0.1 equiv.), triphenylphosphine (0.1 equiv.), calcium carbide (6 equiv.) in 1:2 mixture of base and solvent. All reactions were carried out under positive pressure of N₂ filled in rubber balloons. The mixture was stirred at room temperature for 20 hours. The solution was then filtrated with cotton wool by methylene chloride as eluent, concentrated to a small volume and precipitated by dropping the solution into 150 mL of methanol. The precipitate that formed was collected by centrifuge, washed repeatedly with methanol and evaporated under vacuum.

Synthesis of poly(1,4-dibutoxy-*p*-phenyeneethynylene) (2a)¹²

Synthesis as declared in procedure C using **1a** (150 mg, 0.31 mmol), palladium(II)acetate (3.37 mg, 0.015 mmol), copper iodide (5.90 mg, 0.031 mmol), triphenylphosphine (8.13mg, 0.031 mmol), calcium carbide (119.22mg, 1.86 mmol) and DBU (2 mL) in THF (4 mL) to afford **2a** (53.48 mg, 71%) as a yellow orange solid. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (br, 2H), 4.04 (br, 4H), 1.83 (br, 4H), 1.55 (br, 4H), 0.99 (br, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 153.9, 117.7, 114.7, 91.9, 69.8, 31.7, 19.6, 14.2. FTIR (cm⁻¹): 2954, 2929, 2869, 2200, 2157, 1768, 1721, 1595. GPC (vs. polystyrene standards in tetrahydrofuran): M_w = 20,168, M_w/M_n = 2.3, DP_n = 36.

Synthesis of poly(1,4-bis(octyloxy)-p-phenyleneethynylene) (2b)^{3,12,13}

Synthesis as declared in procedure C using **1b** (100 mg, 0.17 mmol), palladium(II)acetate (1.9 mg, 0.008 mmol), copper iodide (3.24 mg, 0.017 mmol), triphenylphosphine (4.46 mg, 0.017 mmol), calcium carbide (65.38 mg, 1.02 mmol) and DBU (1 mL) in THF (2 mL) to afford **2b** (47.27 mg, 78%) as an orange solid. ¹H NMR (400 MHz, CDCl₃): δ 6.99 (br, 2H), 4.01 (br, 4H), 1.83 (br, 4H), 1.49 (br, 4H), 1.27 (br, 16H), 0.86 (br, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 153.7, 117.6, 114.5, 91.6, 69.9, 32.0, 29.6, 29.5, 29.5, 26.2, 22.8, 14.2. FTIR (cm⁻¹): 2922, 2850, 2186, 2157, 1733, 1597. GPC (vs. polystyrene standards in tetrahydrofuran): $M_w = 40.972$, $M_w/M_n = 2.40$, $DP_n = 48$.

Synthesis of poly(1,4-bis(2-ethylhexyloxy)-p-phenyleneethynylene) (2c)^{3,14}

Synthesis as declared in procedure C using **1c** (100 mg, 0.17 mmol), palladium(II)acetate (1.9 mg, 0.008 mmol), copper iodide (3.24 mg, 0.017 mmol), triphenylphosphine (4.46 mg, 0.017 mmol), calcium carbide (65.38 mg, 1.02 mmol) and DBU (0.5 mL) in THF (1 mL) to afford **2c** (50.36 mg, 83%) as a yellow fiber. ¹H NMR (400 MHz, CDCl₃): δ 6.99 (s, 2H), 3.89 (s, 4H), 1.81 (s, 2H), 1.53 (s, 8H), 1.33 (s, 8H), 0.98 (s, 5H), 0.88 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ : 153.6, 116.6, 114.1,

91.5, 71.9, 39.5, 30.5, 29.0, 23.9, 22.9, 13.9, 11.2. FTIR (cm⁻¹): 2954, 2921, 2869, 2855, 2203, 2159, 1642, 1592. Found: C, 80.86; H, 10.11. Calc. for $C_{12}H_{18}O$: C, 80.84; H, 10.18%. GPC (vs. polystyrene standards in tetrahydrofuran): $M_w = 91300$, $M_w/M_n = 2.00$, $DP_n = 128$.

Synthesis of poly(1-(2-ethylhexyloxy)-4-methoxy-p-phenyleneethynylene) (2d)

Synthesis as declared in procedure C using **1d** (100 mg, 0.20 mmol), palladium(II)acetate (2.25 mg, 0.01 mmol), copper iodide (3.81 mg, 0.02 mmol), triphenylphosphine (5.25 mg, 0.02 mmol), calcium carbide (76.92 mg, 1.20 mmol) and DBU (1.34 mL) in THF (2.66 mL) to afford **2d** (48.28 mg, 93%) as a yellow-green powder. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (s, 1H),3.90 (br, 4H),1.80 (br, 1H),1.73-1.19 (br, 8H), 0.96-0.88 (br, 5H). ¹³C NMR (101 MHz, CDCl₃): δ 153.9, 153.7, 117.0, 115.1, 91.5, 71.7, 56.3, 39.5, 30.4, 29.0, 23.8, 22.9, 13.9, 11.1. FTIR (cm⁻¹): 2954, 2924, 2872, 2855, 2198, 2159, 1663, 1642, 1603, 1546. Found: C, 79.05; H, 8.59. Calc. for C₁₇H₂₂O₂: C, 79.03; H, 8.58%. GPC (vs. polystyrene standards in tetrahydrofuran): M_w = 26,915, M_w/M_n = 2.21, DP_n = 47.

Synthesis of poly(1,4-bis(2-(2-methoxyethoxy)ethoxy)-p-phenyleneethynylene) (2e)

Synthesis as declared in procedure C using **1e** (100 mg, 0.18 mmol), palladium(II)acetate (2.02 mg, 0.009 mmol), copper iodide (3.43 mg, 0.018 mmol), triphenylphosphine (4.72 mg, 0.018 mmol), calcium carbide (69.23 mg, 1.08 mmol) and DBU (1.16 mL) in THF (2.24 mL) to afford **2e** (52.43 mg, 87%) as an orange film. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (s, 2H), 4.24 (br, 4H), 3.92 (br, 4H), 3.77 (br, 4H), 3.53 (br, 4H), 3.35 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 154.13, 118.55, 115.15, 91.98, 72.53, 71.49, 70.22, 59.49. FTIR (cm⁻¹): 2921, 2872, 2817, 2198, 2159, 1721, 1666, 1633, 1600. Found: C, 64.17; H, 6.92. Calc. for C₃H₄O: C, 64.27; H, 7.19%. GPC (vs. polystyrene standards in tetrahydrofuran): M_w = 26,975, M_w/M_n= 1.56, DP_n = 51.

Synthesis of poly(1,4-bis(oxy)dipropan-1-ol-p-phenyleneethynylene) (2f)

Synthesis as declared in procedure C using 1f (100 mg, 0.21 mmol), palladium(II)acetate (2.36 mg, 0.01 mmol), copper iodide (4.00 mg, 0.02 mmol), triphenylphosphine (5.51 mg, 0.02 mmol), calcium carbide (80.77 mg, 1.26 mmol) and DBU

(1.33 mL) in THF (2.66 mL) to afford **2f** (48.40 mg, 93%) as a dark-orange solid. ¹H NMR (400 MHz, DMSO- d_6): δ 7.15 (s, 2H), 4.57 (br, 4H), 4.14 (br, 4H), 3.64 (br, 4H), 1.91 (br, 4H). ¹³C NMR (101 MHz, DMSO- d_6): δ 152.9, 116.9, 113.6, 91.6, 66.2, 57.4, 32.2. FTIR (cm⁻¹): 3313, 2929, 2874, 2184, 2159, 1735, 1713, 1598.

\

Copies of ¹H NMR and ¹³C NMR

Figure S1¹H and ¹³C NMR spectra of compound a

Figure S2 1 H and 13 C NMR spectra of compound 1a

110 100 90 f1 (ppm) ò зо Figure S3 1 H and 13 C NMR spectra of compound b

Figure S6 1 H and 13 C NMR spectra of compound 1c

Figure S8 ¹H and ¹³C NMR spectra of compound e

^{f1 (ppm)} Figure S10 ¹H and ¹³C NMR spectra of compound 1e

Figure S14 ¹H and ¹³C NMR spectra of PPE 2b

Figure S16 ¹H and ¹³C NMR spectra of PPE 2d

Figure S17 1 H and 13 C NMR spectra of PPE 2e

Figure S18 ¹H and ¹³C NMR spectra of PPE 2f

A 100 mL round bottom flask with a magnetic stir bar was charged with 1,4-dibutoxy-2,5-diiodobenzene **1a** (150.0 mg, 0.31 mmol), TMS-acetylene (36.53 mg, 0.37 mmol), Pd(PPh₃)₄ (17.34 mg, 0.015 mmol), CuI (5.90 mg, 0.031 mmol), DBU (0.28 g, 1.86 mmol) in MeCN/H₂O. The solution was stirred at room temperature under N₂ atmosphere for 3 days. After the reaction proceeded completely, the reaction mixture was then filtrated through a cotton wool and washed with CH₂Cl₂. The filtered was evaporated under vacuum and precipitated by dropping the solution into 150 mL of MeOH. The precipitate that formed was collected by centrifuge, washed repeatedly with MeOH and evaporated under vacuum to give poly(1,4-dibutoxy-*p*-phenyleneethynylene) **2a** (75.5 mg, 100%) as yellow-green powder. ¹H NMR (400 MHz, CDCl₃): δ 7.02–6.91 (d, 2H), 4.04 (s, 4H), 1.84–1.83 (d, 4H), 1.57–1.56 (d, 4H), 1.00 (s, 6H). GPC (vs. polystyrene standards in tetrahydrofuran): M_w = 9,669 Da, M_w/M_n= 2.30, DP_n = 17.

Figure S19¹H NMR spectra of PPE 2a from TMS acetylene

Figure S20 Normalized absorption and emission spectra of 2a–2e in CHCl₃ and 2f in DMSO.

Table S1. Appearances of 2a-2f

Entry	PPEs	Precipitance	Solution	Under black-light
1	2a : $R_1 = R_2 = O(CH_2)_3 CH_3$			
2	2b : $R_1 = R_2 = O(CH_2)_7 CH_3$			
3	2c : R ₁ =R ₂ =OCH ₂ CH(CH ₂ CH ₃)((CH ₂) ₃ CH ₃)	No.		
4	2d : R_1 = OMe R_2 =OCH ₂ CH(CH ₂ CH ₃)((CH ₂) ₃ CH ₃)			
5	2e : $R_1 = R_2 = O(CH_2)_2 O(CH_2)_2 OCH_3$			
6	2f : $R_1 = R_2 = O(CH_2)_3OH$			

References

- 1. M. Ueda, T. Abe, H. Awano, *Macromolecules*, 1992, 25, 5125–5130.
- 2. V. M. Halleux and Y. H. Geerts, React. Funct. Polym., 2000, 43, 145–151.
- 3. C. Weder and M. S. Wrighton, *Macromolecules*, 1996, 29, 5157–5165.
- 4. C. J. Neef and J. P. Ferraris, *Macromolecules*, 2000, **33**, 2311–2314.
- 5. R. Castro, K. R. Nixon, J. D. Evanseck, A. E. Kaifer, J. Org. Chem., 1996, 61, 7298–7303.
- S. A. Caldarelli, J. F. Duckert, S. Wein, M. Calas, C. Périgaud, H. Vial, S. Peyrottes, *ChemMedChem*, 2010, 5, 1102–1109.
- 7. T. M. Swager, C. J. Gil, M. S. Wrighton, J. Phys. Chem., 1995, 99, 4886-4893.
- D. A. M. Egbe, C. P. Roll, E. Birckner, U. W. Grummt, R. Stockmann, E. Klemm, *Macromolecules*, 2002, 35, 3825–3837.
- 9. B. L. Lucht, S. S. H. Mao, T. D. Tilley, J. Am. Chem. Soc., 1998, 120, 4354-4365.
- 10. J. Li, C. E. Kendig, E. E. Nesterov, J. Am. Chem. Soc., 2007, 129, 15911–15918.
- (a) G. T. Crisp and T. P. Bubner, *Tetrahedron*, 1997, **53**, 11899–11912; (b) P. Kan-Yi, C. Yi, Q. Xiao-Ying, Q. Chun-Yang, C. Qing-Quan, W. Hong-Yu, D. Yun, F. Qu-Li, H. Yan-Qin, L. Shu-Juan, W. Wei, P. Bo, H. Wei, *J. Polym. Sci. A Polym. Chem.*, 2007, **45**, 3776–3787.
- (a) US Pat., 5 334 539, 1994; (b) G. Giardina, P. Rosi, A. Ricci, C. L. Sterzo, J. Polym. Sci. A Polym. Chem., 2000, 38, 2603–2621; (c) R. Pizzoferrato, M. Berliocchi, A. D. Carlo, P. Lugli, M. Venanzi, A. Micozzi, A. Ricci, C. L. Sterzo, Macromolecules, 2003, 36, 2215–2223.
- 13. (a) D. Knapton, S. J. Rowan, C. Weder, *Macromolecules*, 2006, **39**, 651–657; (b) J. B. Beck, A. Kokil, D. Ray, S. J. Rowan, C. Weder, *Macromolecules*, 2002, **35**, 590–593.
- (a) M. Burnworth, J. D. Mendez, M. Schroeter, S. J. Rowan, C. Weder, *Macromolecules*, 2008, 41, 2157–2163; (b) J. N. Wilson, S. M. Waybright, K. McAlpine, U. H. F. Bunz, *Macromolecules*, 2002, 35, 3799–3800.