Supporting Information

Combining Oxyanionic Polymerization and Click-Chemistry: A General Strategy for Polyether Polyol Macromonomers

Anja Thomas,¹ Kerstin Niederer,¹ Frederik Wurm² and Holger Frey^{*1}

¹Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany

²Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

(D,L-1,2-Isopropylidene glyceryl glycidyl ether) (IGG)

The epoxide monomer (DL-1,2-isopropylidene glyceryl glycidyl) ether (IGG) was synthesized according to a literature procedure.¹ In brief, epichlorohydrine and D,L-1,2-isopropylidene glycerol (solketal) were reacted in a phase transfer reaction. After several washing steps, the solvent was removed. The crude product was purified via distillation under reduced pressure.

¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 4.3 (m,1H, CH acetal), 4.07 (m, 1H, CH epoxid), 3.88 – 3.39 (m, 4H, CH₂) 3.17 (m, 2H CH₂ acetal), 2.81 (t, 1H, CH₂ epoxide), 2.63 (q, 1H, CH₂ epoxide), 1.44 (s, 3H, CH₃), 1.38 (s, 3H, CH₃)

1-Azido-6-hydroxyhexane

1-Azido-6-hydroxyhexane was prepared as reported previously.² Sodium azide (4.87 g, 0.07 mol,
2 eq.) was dissolved in water (20 mL) and subsequently 1-chloro-6-hydroxyhexane (5 mL, 0.04

mol, 1 eq.) was added via syringe. After stirring over night at 80 °C, the mixture was cooled down to room temperature and extracted with diethyl ether (3 x 50 mL). The combined ether phases were dried over anhydrous sodium sulfate (Na₂SO₄), filtered and the solvent was removed under vacuum. To react residual 1-chloro-6-hydroxyhexane, the crude product was again dissolved in water (40 mL) and sodium azide was added (2.45 g, 0.04 mol, 1 eq.). The mixture was refluxed over night and purified as described above. After removal of residual solvent in a vacuum desiccator at 40 mbar over night the product was obtained as a colorless liquid (4.45 g, 83%).

¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 3.64 (t, 2H, HOC H_2 , J = 6.5 Hz,), 3.26 (t, 2H, N₃C H_2 , J = 6.9 Hz,), 1.65 – 1.54 (m, 4H, C H_2), 1.43 – 1.34 (m, 4H, C H_2)

1-Azido-3-hydroxypropane

1-Azido-3-hydroxypropane was synthesized as reported elsewhere.³ Sodium azide (15.55 g, 0.24 mol, 2 eq) and tetrabutyl ammonium hydrogensulfate (40 mg, 1.2 mmol, 0.01 eq) were dissolved in water (15 mL) in a round bottom flask equipped with a reflux condensor. 1-chloro-3 hydroxypropane was added via syringe and the mixture was stirred for 24 hrs at 80 °C. After cooling to room temperature water (20 mL) was added and the mixture extracted with diethyl ether (3 x 80 mL). The collected ether fractions were dried over Na₂SO₄, filtered and distilled under reduced pressure (35 °C, 0.02 mbar) to yield the pure product (11 g, 91%).

¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 3.72 (t, 2H, HOC*H*₂, *J* = 6.0 Hz), 3.43 (t, 2H, N₃C*H*₂, *J* = 6.6 Hz), 2.11 (s, 1H O*H*), 1.93 – 1.71 (m, 2H, C*H*₂).

Azidoalkyl methacrylate

Azidoalkylmethacrylates were prepared similar to a literature procedure.³ α -Azido- ω -hydroxyalkane (1 eq.), hydroquinone (5 mg) and triethyl amine (TEA, 1.3 eq.) were dissolved in dry dichloromethane (DCM) and cooled to 0°C in an ice bath. Methacryloyl chloride (1.2 eq.) was added slowly over a period of 10 minutes. The ice bath was removed and the mixture was stirred over night at room temperature. After extraction with 1M HCl (3 x 50 mL), 1M NaOH (2 x 50 mL) and brine (2x 50 mL) the organic phase was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was distilled twice (56 °C, 0.03 mbar) for azidopropyl methacrylate (AzPMA) or purified by column chromatography using hexanes and ethyl acetate (5:1.5) as eluent for azidohexyl methacrylate (AzHMA) to yield a colorless liquid.

AzPMA

Yield: 52%

¹H NMR (CDCl₃, 300 MHz) δ (ppm) = 6.10 (m, 1H, CH₂=C), 5.57 (m, 1H, CH₂=C), 4.23 (t, 2H, CH₂OOC, J = 6.2 Hz), 3.41 (t, 2H, CH₂N₃, J = 6.7 Hz), 2.05 – 1.86 (m, 5H, CH₃ + CH₂).

AzHMA

Yield: 44%

¹H NMR (*CDC*l₃, 300 MHz) δ (ppm) = 6.07 (m, 1H, *CH*₂=C), 5.53 (m, 1H, *CH*₂=C), 4.12 (t, 2H, *CH*₂OOC, *J* = 6.6 Hz), 3.25 (t, 2H, *CH*₂N₃, *J* = 6.9 Hz), 1.92 (m, 3H, *CH*₃), 1.74 – 1.50 (m, 4H, *CH*₂), 1.49 – 1.25 (m, 4H, *CH*₂).

Figure S1 ¹H NMR spectra in $CDCl_3$ of P(EEGE) using MEtOH (A, 300 MHz) or PEtOH (B, 400 MHz) as initiator.

Figure S3. ¹³C-NMR spectrum for $linPPG_{24}$ (100 MHz, DMSO- d_6).

Figure S4. COSY NMR spectrum of *lin*PPG₂₄ in DMSO-*d*₆.

Figure S5. HSQC NMR spectrum for *lin*PPG₂₄ in DMSO-*d*₆.

Figure S6. HMBC NMR spectrum for *lin*PPG₂₄ in DMSO-*d*₆.

Figure S7. SEC for PP(GG)₁₀ (black solid line, sample XI, table 1)), P(GG)₁₀TzPMA (grey solid line, cf. table 2) and P(GG)₁₀TzHMA (grey dashed line, cf. table 2). SEC in DMF, PEG standards, RI signal.

Figure S9. ¹³C-NMR spectrum for *lin*PG₂₂TzPMA (100 MHz, DMSO-*d*₆).

Figure S11. COSY NMR spectrum of *lin*PG₂₂TzPMA (400 MHz, DMSO-*d*₆).

Figure S12. HSQC NMR spectrum for *lin*PG₂₂TzPMA (400 MHz, DMSO-*d*₆).

Figure S13. HMBC NMR spectrum for *lin*PG₂₂TzPMA in DMSO-*d*₆ (400 MHz).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

A)

Figure S14. A) MALDI-ToF spectra of *lin*PG₁₄TzPMA (red) *lin*PG₂₂TzPMA (green) *lin*PG₃₂TzPMA (blue) and B) *lin*PG₁₄TzHMA (red,) *lin*PG₂₂TzHMA (green) *lin*PG₃₂TzHMA (blue). The distributions represent the desired macromonomer structures ionized with sodium and potassium, with the mass difference being exactly 74 g/mol (mass of one glycerol unit) for both the sodium and the potassium distribution.

Figure S15. SEC-MALLS measurement for P(*lin*PG₃₂TzHMA), sample XVI, table 3.

Figure S16. DLS measurement for P(*lin*PG₃₂TzHMA), sample XVI, table 3.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

- 1. F. Wurm, J. Nieberle and H. Frey, *Macromolecules*, 2008, **41**, 1909-1911.
- 2. Y. Li and B. C. Benicewicz, *Macromolecules*, 2008, **41**, 7986-7992.
- 3. B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee and K. Matyjaszewski, *Macromolecules*, 2005, **38**, 7540-7545.