Polyoxalates from Biorenewable Diols via Oxalate Metathesis Polymerization

John J. Garcia and Stephen A. Miller*

The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida Gainesville, Florida 32611-7200, USA

Electronic Supplementary Information (ESI)

Supplementary Information Available: Synthetic details, analytical details, and complete polymer characterization data.

Table of Contents

General Considerations and Instrumentation	S2
Monomer Preparation	S2
Polymerizations	S2
Summary of Polymerization Data	S 5
Gel Permeation Chromatography (GPC) Analysis	S 6
Differential Scanning Calorimetry (DSC) Thermograms	S17
Thermogravimetric Analysis (TGA) Thermograms	S33
¹ H NMR Spectra	S49
¹³ C NMR Spectra	S60
¹ H NMR Analysis for Copolymer Composition	S71
Computational Studies of Polyoxalate Segments	S72

General Considerations and Instrumentation

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded using a Varian Mercury 300 MHz and Inova 500 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm) or residual proton in the specified solvent. Coupling constants (*J*) are reported in Hertz (Hz). Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintuplet; m, multiplet; br, broad.

Differential scanning calorimetry theromograms were obtained with a DSC Q1000 from TA instruments. About 1.5-3 mg of each sample were massed and added to a sealed pan that passed through a heat/cool/heat cycle at 10 °C/min. Reported data are from the second full cycle. The temperature ranged from -100 to 200 °C.

Thermogravimetric analyses were measured under nitrogen with a TGA Q5000 from TA Instruments. About 5-10 mg of each sample were heated at 10 °C/min from 25 to 600 °C.

Gel permeation chromatography (GPC) was performed at 40 °C using a Waters Associates GPCV2000 liquid chromatography system with an internal differential refractive index detector and two Waters Styragel HR-5E columns (10 μ m PD, 7.8 mm i.d., 300 mm length) using HPLC grade tetrahydrofuran (THF) as the mobile phase at a flow rate of 1.0 mL/min. Calibration was performed with narrow polydispersity polystyrene standards.

Monomer Preparation

1,3-propanediol. 1,3-propanediol was purchased from Aldrich as a liquid in 99.6% purity.

2,2-dimethyl-1,3-propanediol. Was purchased from Aldrich as a solid in 99% purity

1,4-butanediol. 1,4-butanediol was purchased from Aldrich as a liquid in 99% purity.

1,5-pentanediol. 1,5-pentanediol was purchased from Acros Organics as a liquid in 98% purity. The monomer was further purified by first stirring it over calcium hydride for 24 hours followed by vacuum distillation. The purified monomer was stored over molecular sieves.

1,6-hexanediol. 1,6-hexanediol was purchased from Acros Organics as a crystalline solid in 97 % purity. The monomer was further purified by recrystallization from ethyl acetate.

1,7-heptanediol. 1,7-pentanediol was purchased from Aldrich as a liquid in 95% purity. The monomer was further purified by first stirring it over calcium hydride for 24 hours followed by vacuum distillation. The purified monomer was stored over molecular sieves.

1,8-octanediol. 1,8-octanediol was purchased from Acros Organics as a crystalline solid in 99% purity. The monomer was further purified by recrystallization from ethyl acetate.

1,9-nonanediol. 1,9-nonanediol was purchased from Acros Organics as a crystalline solid in 99% purity. The monomer was further purified by recrystallization from ethyl acetate.

1,10-decanediol. 1,10-decanediol was purchased from Acros Organics as a crystalline solid in 99% purity. The monomer was further purified by recrystallization from 1,2-dichloroethane.

1,11-undecanediol. 1,11-undecanediol was purchased from Accela as a crystalline solid in 97% purity.

1,12-dodecanediol. 1,12-dodecanediol was purchased from Aldrich as a crystalline solid in 99% purity. The monomer was further purified by recrystallization from 1,2-dichloroethane.

Resorcinol bis(beta-hydroxyethyl)ether. 1 mol of Resorcinol reacted with 2 moles of ethylene carbonate and catalytic amount of Triphenylphosphine (PPh₃) at 150 °C for 24 hours, then cooled. 200 mL of methanol in ice bath were added, crystals were filtered and washed with more cold methanol, giving 64% yield of final product.

Hydroquinone bis(beta-hydroxyethyl)ether. Hydroquinone bis(beta-hydroxyethyl)ether. Was purchased from Aldrich as a solid in 99+% purity.

Dimethyl oxalate. Dimethyl oxalate was purchased from Aldrich as a crystalline solid in 99% purity.

Polymerizations

Polymerization device. The polymerizations were typically conducted in a round bottom flask, connected to a rotary evaporation bump trap, connected to a vacuum line. With this apparatus molecules of condensation could be collected and visualized in the bump trap, followed by removal of all volatiles—without changing the initial glassware configuration. See below.

General polymerization and workup procedure. A 50 mL round bottom flask was charged with one equivalent of dimethyl oxalate, one equivalent of the corresponding diol, and about 2 mol% of *para*-toluenesulfonic acid (*p*-TSA). The mixture was stirred under a nitrogen atmosphere for 1 hour at 100 °C. After that the temperature was increased to 130 °C for 2 hours. Then, vacuum was pulled for 1 hour, and finally temperature was increased to 220 °C for 3 hours. The product was dissolved in about 30-40 mL of methylene chloride or dimethyl sulfoxide. The polymer was reprecipitated by the addition of the solution in about 100 mL of cold methanol. The system was filtered and polymer was dried under vacuum.

Polypropylene oxalate

Table S1, Entry 1. 44.8% yield. ¹H NMR (CDCl₃): ppm 4.42 (t, J = 6.1 Hz, 4 H), 2.20 (quin, J = 6.1 Hz, 2 H). ¹³C NMR (CDCl₃): δ ppm 157.4, 63.5, 27.3.

Polyneopentylene oxalate

Table S1, Entry 2. 62.9% yield. ¹H NMR (CDCl₃): ppm 4.12 (s, 4 H), 1.07 (s, 6 H). ¹³C NMR (CDCl₃): δ ppm 157.1, 70.9, 35.0, 21.5.

Polybutylene oxalate

$$\left[\overset{0}{\vdash} \overset{0}{\dashv} \overset$$

Table S1, Entry 3. 72.2% yield. ¹H NMR (CDCl₃): ppm 4.38 - 4.31 (m, 4 H), 1.92 - 1.84 (m, 4 H). ¹³C NMR (CDCl₃): δ ppm 157.6, 66.3, 24.8.

Polypentylene oxalate

Table S1, Entry 4. 79.1% yield. ¹H NMR (CDCl₃): ppm 4.30 (t, J = 6.6 Hz, 4 H), 1.80 (quin, J = 7.2 Hz, 4 H), 1.51 (quin, J = 7.5 Hz, 2 H). ¹³C NMR (CDCl₃): δ ppm 157.8, 66.7, 27.8, 22.1.

Polyhexylene oxalate

$$\left\{ \int_{W} \int_{U} \mathcal{O} \mathcal{O}_{U}^{c} \right\}$$

Table S1, Entry 5. 77.7% yield. ¹H NMR (CDCl₃): ppm 4.29 (t, J = 6.6 Hz, 4 H), 1.76 (quin, J = 7.0 Hz, 4 H), 1.49 – 1.40 (m, 4 H). ¹³C NMR (CDCl₃): δ ppm 157.9, 66.8, 28.1, 25.3.

Polyheptylene oxalate

$$\left[\overset{0}{\amalg} \overset{0}{\twoheadrightarrow} \overset{0}{\to} \overset$$

Table S1, Entry 6. 68.6% yield. ¹H NMR (CDCl₃): ppm 4.28 (t, J = 6.9 Hz, 4 H), 1.83 – 1.66 (m, 4 H), 1.49 – 1.32 (m, 6 H). ¹³C NMR (CDCl₃): δ ppm 157.9, 67.0, 28.6, 28.1, 25.5.

Polyoctylene oxalate

$$\left[\int_{\mathbb{R}}^{\mathbb{Z}} \mathcal{O} \mathcal{O}^{*} \mathcal{O} \right]$$

Table S1, Entry 7. 85.1% yield. ¹H NMR (CDCl₃): ppm 4.28 (t, J = 6.6 Hz, 4 H), 1.74 (quin, J = 7.1 Hz, 4 H), 1.44 – 1.30 (m, 8 H). ¹³C NMR (CDCl₃): δ ppm 158.0, 67.0, 28.9, 28.2, 25.6.

Polynonylene oxalate

$$\mathcal{H}_{\mathcal{O}}\mathcal{H}_{\mathcal{O}}$$

Table S1, Entry 8. 76.7% yield. ¹H NMR (CDCl₃): ppm 4.28 (t, J = 6.8 Hz, 4 H), 1.73 (quin, J = 6.8 Hz, 4 H), 1.44 – 1.27 (m, 10 H). ¹³C NMR (CDCl₃): δ ppm 158.0, 67.1, 29.2, 29.0, 28.2, 25.6.

Polydecylene oxalate

Table S1, Entry 9. 83.2% yield. ¹H NMR (CDCl₃): ppm 4.28 (t, J = 6.8 Hz, 4 H), 1.73 (quin, J = 7.2 Hz, 4 H), 1.42 - 1.26 (m, 12 H). ¹³C NMR (CDCl₃): δ ppm 158.1, 67.1, 29.3, 29.1, 28.3, 25.7.

Polyundecylene oxalate

Table S1, Entry 10. 73.4% yield. ¹H NMR (CDCl₃): ppm 4.28 (t, J = 6.8 Hz, 4 H), 1.73 (quin, J = 7.0 Hz, 4 H), 1.43 – 1.23 (m, 14 H). ¹³C NMR (CDCl₃): δ ppm 158.0, 67.1, 29.4, 29.4, 29.1, 28.2, 25.7.

Polydodecylene oxalate

Table S1, Entry 11. 84.7% yield. ¹H NMR (CDCl₃): ppm 4.30 (t, J = 7.1 Hz, 4 H), 1.76 (quin, J = 7.0 Hz, 4 H), 1.44 – 1.25 (m, 16 H). ¹³C NMR (CDCl₃): δ ppm 158.0, 67.2, 29.5, 29.4, 29.1, 28.3, 25.7.

Poly(decylene-co-RBHE) oxalate [50:50]

Table S2, Entry 5. 75.8% yield. ¹H NMR (CDCl₃): ppm 7.06 – 7.25 (m, 1 H), 6.39 – 6.63 (m, 3 H), 4.62 (br s, 4 H), 4.09 – 4.40 (m, 8 H), 1.61 – 1.86 (m, 4 H), 1.30 ppm (br s, 12 H). ¹³C NMR (CDCl₃): δ ppm 159.4, 158.0, 157.8, 157.5, 157.3, 130.1, 107.5, 101.9, 67.3, 67.1, 65.2, 65.1, 64.9, 29.3, 29.1, 28.2, 25.7.

Poly(RBHE) oxalate

Table S2, Entry 10. 56.4% yield. ¹H NMR (DMSO-*d*₆): ppm 7.16 (t, J = 8.8 Hz, 1 H), 6.59 – 6.46 (m, 3 H), 4.62 – 4.45 (m, 4 H), 4.33 - 4.14 (m, 4 H). ¹³C NMR (DMSO-*d*₆): δ ppm 159.2, 157.0, 130.0, 107.3, 101.2, 65.3, 65.0.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is © The Royal Society of Chemistry 2013

Poly(decylene-co-HBHE) oxalate [50:50] **`**0-Table S2, Entry 15. 75.6% yield. ¹H NMR (CDCl₃): ppm 6.88 - 6.80 (m, 4 H), 4.60 (br s, 4 H), 4.28 (q, J =6.2 Hz, 4 H), 4.21 (d, J = 3.9 Hz, 4 H), 1.79 – 1.68 (m, 4 H), 1.44 – 1.24 (m, 12 H). ¹³C NMR (CDCl₃): δ ppm 158.0, 157.8, 157.5, 157.3, 152.9, 115.8, 115.8, 67.3, 67.1, 65.9, 65.2, 65.0, 29.2, 29.0, 28.2, 25.6.

Poly(HBHE) oxalate

Table S2, Entry 20. 87.6% yield. ¹H NMR (DMSO- d_6): ppm 6.99 – 6.73 (m, 4 H), 4.18 (br s, 4 H) 4.53 (br s, 4 H). ¹³C NMR (DMSO- d_6): δ ppm 157.0, 152.3, 115.5, 65.7, 65.1.

Summary of Polymerization Data

Table S1. Molecular weight and thermal properties of polyalkylene oxalates.^a

Entry	Polymer	% Yield	$M_{\rm w}$ (Da)	$M_{\rm n}$ (Da)	PDI	$T_{\rm g}(^{\rm o}{\rm C})$	$T_{\rm m}(^{\circ}{\rm C})$	$H_{\rm m}({\rm J/g})$	$H_{\rm c} ({\rm J/g})$	$T_{50} (^{\circ}\mathrm{C})^{\mathrm{c}}$
1	$\left[\overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{$	45	n.a.	n.a.	n.a.	-2	78 ^b	53 ^b	n.o.	314
2	$\{ \mathbb{I}_{\mathcal{A}}^{\mathbb{I}} \subset \mathcal{A}^{\mathbb{I}} \}$	63	19,400	11,200	1.73	7	103 ^b	57 ^b	n.o.	350
3	$\left[\overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{$	72	n.a.	n.a.	n.a.	n.o.	98	64	64	327
4	$\left[\overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}} \right]$	79	41,400	21,800	1.90	-34	56 ^b	56 ^b	n.o.	357
5	$\left[\begin{array}{c} 0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	78	40,700	24,300	1.68	n.o.	76	65	62	354
6	$\left[\overset{0}{\vdash} \overset{0}{\downarrow} \overset$	69	39,600	22,000	1.80	-48	35 ^b	20 ^b	n.o.	369
7	$\left[\overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{$	85	62,400	36,900	1.69	n.o.	76	55	64	366
8	$\{ \overset{\circ}{\vdash} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} $	77	71,300	40,400	1.76	-47	40	52	51	371
9	$\left[\overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}}, \overset{\circ}{\overset{\circ}{\overset{\circ}}}_{\overset{\circ}{\overset{\circ}}}, \overset{\circ}{\overset{\circ}{\overset{\circ}}}\right]$	83	67,600	36,600	1.85	n.o.	79	57	65	369
10	$\left[\overset{0}{{}{}} \overset{0}{} \overset{0}{}{$	73	33,300	15,600	2.14	-29	55	71	71	342
11		85	69,300	39,500	1.76	n.o.	80	76	73	369

^aMolecular weight data obtained by GPC versus polystyrene standards; n.a. indicates data not available because of insolubility in the GPC solvent, THF. Thermal DSC data obtained from the second cycle unless otherwise noted; n.o. indicates a thermal transition not observed. ^bThermal DSC data obtained from the first cycle. ^cTemperature for 50% mass loss by TGA under nitrogen.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2013

Table S2. Characterization of ali	phatic/aromatic copoly	oxalates synthesized from	diols and dimethyl oxalate. ^a
2 doite of an article of an			arons and anniethyr shalater

Entry	Hotologian	рособранов l feed (%) нособрановн	Yield (%)	% Aromatic incorp. ¹ H NMR (%)	M _w (Da)	M _n (Da)	PDI	T _g (°C)	T _m (°C)	H _m (°C)
1	90	10	76	11	64,900	36,100	1.80	-24	70	52
2	80	20	80	22	71,300	39,900	1.79	-20	66	46
3	70	30	83	26	59,800	32,500	1.84	-15	64	51
4	60	40	71	38	62,400	32,100	1.95	-18	58	7
5	50	50	76	48	63,700	30,000	2.12	-5	95 ^b	25 ^b
6	40	60	61	57	57,500	27,700	2.07	4	103 ^b	41 ^b
7	30	70	73	68	43,700	22,300	1.95	14	122 ^b	20^{b}
8	20	80	73	77	n.a.	n.a.	n.a.	25	133 ^b	35 ^b
9	10	90	46	84	n.a.	n.a.	n.a.	29	138 ^b	41 ^b
10	0	0 100		100	n.a.	n.a.	n.a.	34	156 ^b	50 ^b
Entry		$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & $	Yield (%)	% Aromatic incorp. ¹ H NMR (%)	M _w (Da)	M _n (Da)	PDI	T _g (°C)	T _m (°C)	H _m (°C)
11	90	10	81	7	36,200	16,900	2.13	n.o.	74	69
12	80	20	78	17	68,600	40,100	1.71	-21	67	35
13	70	30	70	20	62,300	35,800	1.74	-16	66	61
14	60	40	78	38	53,800	27,000	1.99	-16	62	57
15	50	50	76	49	52,200	26,100	2.00	-14	137	29
16	40	60	73	56	19,300	10,300	1.87	-12	151	27
17	30	70	78	70	n.a.	n.a.	n.a.	10	164	31
18	20	80	79	82	n.a.	n.a.	n.a.	17	171	38
19	10	90	78	90	n.a.	n.a.	n.a.	27	186	56
20	0	100	88	100	n.a.	n.a.	n.a.	45	190	68

^aMolecular weight data obtained by GPC versus polystyrene standards; n.a. indicates data not available because of insolubility in the GPC solvent, THF. Thermal DSC data obtained from the second cycle unless otherwise noted; n.o. indicates a thermal transition not observed. ^bThermal DSC data obtained from the first cycle.

Gel Permeation Chromatography (GPC) Analysis

Figure S1. GPC Chromatogram of polyneopentylene oxalate (Table S1, entry 2).

Figure S2. GPC Chromatogram of polypentylene oxalate (Table S1, entry 4).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S3. GPC Chromatogram of polyhexylene oxalate (Table S1, entry 5).

Figure S4. GPC Chromatogram of polyheptylene oxalate (Table S1, entry 6).

Figure S5. GPC Chromatogram of polyoctylene oxalate (Table S1, entry 7).

	or or results														
	Dist Name	Min	Mw	MP	Mz	Mz+1	M٧	Polydispersity	MW Marker 1	MW Marker 2					
1		40405	71276	71408	107177	139682		1.764028							

Figure S6. GPC Chromatogram of polynonylene oxalate (Table S1, entry 8).

Figure S7. GPC Chromatogram of polydecylene oxalate (Table S1, entry 9).

Figure S8. GPC Chromatogram of polyundecylene oxalate (Table S1, entry 10).

Figure S9. GPC Chromatogram of polydodecylene oxalate (Table S1, entry 11).

Figure S10. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [90:10] (Table S2, entry 1).

Figure S11. GPC Chromatogram of oly(decylene-co-RBHE) oxalate [80:20] (Table S2, entry 2).

	OF C Results														
	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2					
1		32472	59803	56378	95869	131215		1.841678							

Figure S12. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [70:30] (Table S2, entry 3).

Figure S13. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [60:40] (Table S2, entry 4).

	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2
1		30015	63735	60362	105303	142513		2.123403		

Figure S14. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [50:50] (Table S2, entry 5).

```
Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Figure S15. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [40:60] (Table S2, entry 6).

	GPC Results														
	Dist Name	Mn	Mw	MP	Mz	Mz+1	Mv	Polydispersity	MW Marker 1	MW Marker 2					
1		22374	43688	35526	72954	105910		1.952661							

Figure S16. GPC Chromatogram of poly(decylene-co-RBHE) oxalate [30:70] (Table S2, entry 7).

Figure S17. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [90:10] (Table S2, entry 11).

Figure S18. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [80:20] (Table S2, entry 12).

Figure S19. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [70:30] (Table S2, entry 13).

Figure S20. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [60:40] (Table S2, entry 14).

Figure S21. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [50:50] (Table S2, entry 15).

Figure S22. GPC Chromatogram of poly(decylene-co-HBHE) oxalate [40:60] (Table S2, entry 16).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Differential Scanning Calorimetry (DSC) Thermograms

Figure S23. DSC Thermogram of polypropylene oxalate (Table S1, entry 1).

Figure S24. DSC Thermogram of polyneopentylene oxalate (Table S1, entry 2).

Figure S25. DSC Thermogram of polybutylene oxalate (Table S1, entry 3).

Figure S26. DSC Thermogram of polypentylene oxalate (Table S1, entry 4).

```
Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is \textcircled{} The Royal Society of Chemistry 2013
```


Figure S27. DSC Thermogram of polyhexylene oxalate (Table S1, entry 5).

Figure S28. DSC Thermogram of polyheptylene oxalate (Table S1, entry 6).

Figure S29. DSC Thermogram of polyoctylene oxalate (Table S1, entry 7).

Figure S30. DSC Thermogram of polynonylene oxalate (Table S1, entry 8).

Figure S31. DSC Thermogram of polydecylene oxalate (Table S1, entry 9).

Figure S32. DSC Thermogram of polyundecylene oxalate (Table S1, entry 10).

Figure S33. DSC Thermogram of polydodecylene oxalate (Table S1, entry 11).

Figure S34. DSC Thermogram of poly(decylene-co-RBHE) oxalate [90:10] (Table S2, entry 1).

Figure S35. DSC Thermogram of poly(decylene-co-RBHE) oxalate [80:20] (Table S2, entry 2).

Figure S36. DSC Thermogram of poly(decylene-co-RBHE) oxalate [70:30] (Table S2, entry 3).

Figure S37. DSC Thermogram of poly(decylene-co-RBHE) oxalate [60:40] (Table S2, entry 4).

Figure S38. DSC Thermogram of poly(decylene-co-RBHE) oxalate [50:50] (Table S2, entry 5).

Figure S39. DSC Thermogram of poly(decylene-co-RBHE) oxalate [40:60] (Table S2, entry 6).

Figure S40. DSC Thermogram of poly(decylene-co-RBHE) oxalate [30:70] (Table S2, entry 7).

Figure S41. DSC Thermogram of poly(decylene-co-RBHE) oxalate [20:80] (Table S2, entry 8).

Figure S42. DSC Thermogram of poly(decylene-co-RBHE) oxalate [10:90] (Table S2, entry 9).

Figure S43. DSC Thermogram of poly(RBHE) oxalate (Table S2, entry 10).

Figure S44. DSC Thermogram of poly(decylene-co-HBHE) oxalate [90:10] (Table S2, entry 11).

Figure S45. DSC Thermogram of poly(decylene-co-HBHE) oxalate [80:20] (Table S2, entry 12).

Figure S46. DSC Thermogram of poly(decylene-co-HBHE) oxalate [70:30] (Table S2, entry 13).

Figure S47. DSC Thermogram of poly(decylene-co-HBHE) oxalate [60:40] (Table S2, entry 14).

Figure S48. DSC Thermogram of poly(decylene-co-HBHE) oxalate [50:50] (Table S2, entry 15).

Figure S49. DSC Thermogram of poly(decylene-co-HBHE) oxalate [40:60] (Table S2, entry 16).

Figure S50. DSC Thermogram of poly(decylene-co-HBHE) oxalate [30:70] (Table S2, entry 17).

Figure S51. DSC Thermogram of poly(decylene-co-HBHE) oxalate [20:80] (Table S2, entry 18).

Figure S52. DSC Thermogram of poly(decylene-co-HBHE) oxalate [10:90] (Table S2, entry 19).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S53. DSC Thermogram of poly(HBHE) oxalate (Table S2, entry 20).

Thermogravimetric Analysis (TGA) Thermograms

Figure S55. TGA Thermogram of polyneopentyl oxalate (Table S1, entry 2).

Figure S56. TGA Thermogram of polybutylene oxalate (Table S1, entry 3).

Figure S57. TGA Thermogram of polypentylene oxalate (Table S1, entry 4).

Figure S58. TGA Thermogram of polyhexylene oxalate (Table S1, entry 5).

Figure S59. TGA Thermogram of polyheptylene oxalate (Table S1, entry 6).

Figure S60. TGA Thermogram of polyoctylene oxalate (Table S1, entry 7).

Figure S61. TGA Thermogram of polynonylene oxalate (Table S1, entry 8).

Figure S62. TGA Thermogram of polydecylene oxalate (Table S1, entry 9).

Figure S63. TGA Thermogram of polyundecylene oxalate (Table S1, entry 10).

Figure S64. TGA Thermogram of polydodecylene oxalate (Table S1, entry 11).

Figure S65. TGA Thermogram of poly(decylene-co-RBHE) oxalate [90:10] (Table S2, entry 1).

Figure S66. TGA Thermogram of poly(decylene-co-RBHE) oxalate [80:20] (Table S2, entry 2).

Figure S67. TGA Thermogram of poly(decylene-co-RBHE) oxalate [70:30] (Table S2, entry 3).

Figure S68. TGA Thermogram of poly(decylene-co-RBHE) oxalate [60:40] (Table S2, entry 4).

Figure S69. TGA Thermogram of poly(decylene-co-RBHE) oxalate [50:50] (Table S2, entry 5).

Figure S70. TGA Thermogram of poly(decylene-co-RBHE) oxalate [40:60] (Table S2, entry 6).

Figure S71. TGA Thermogram of poly(decylene-co-RBHE) oxalate [30:70] (Table S2, entry 7).

Figure S72. TGA Thermogram of poly(decylene-co-RBHE) oxalate [20:80] (Table S2, entry 8).

Figure S73. TGA Thermogram of poly(decylene-co-RBHE) oxalate [10:90] (Table S2, entry 9).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S74. TGA Thermogram of poly(RBHE) oxalate (Table S2, entry 10).

Figure S75. TGA Thermogram of poly(decylene-co-HBHE) oxalate [90:10] (Table S2, entry 11).

Figure S76. TGA Thermogram of poly(decylene-co-HBHE) oxalate [80:20] (Table S2, entry 12).

Figure S77. TGA Thermogram of poly(decylene-co-HBHE) oxalate [70:30] (Table S2, entry 13).

Figure S78. TGA Thermogram of poly(decylene-co-HBHE) oxalate [60:40] (Table S2, entry 14).

Figure S79. TGA Thermogram of poly(decylene-co-HBHE) oxalate [50:50] (Table S2, entry 15).

Figure S80. TGA Thermogram of poly(decylene-co-HBHE) oxalate [40:60] (Table S2, entry 16).

Figure S81. TGA Thermogram of poly(decylene-co-HBHE) oxalate [30:70] (Table S2, entry 17).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S82. TGA Thermogram of poly(decylene-co-HBHE) oxalate [20:80] (Table S2, entry 18).

Figure S83. TGA Thermogram of poly(decylene-co-HBHE) oxalate [10:90] (Table S2, entry 19).

Figure S84. TGA Thermogram of poly(HBHE) oxalate (Table S2, entry 20).

¹H NMR Spectra

Figure S85. ¹H NMR spectrum of polypropylene oxalate (Table S1, entry 1).

Figure S86. ¹H NMR spectrum of polyneopentylene oxalate (Table S1, entry 2).

Figure S87. ¹H NMR spectrum of polybutylene oxalate (Table S1, entry 3).

```
Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is \textcircled{O} The Royal Society of Chemistry 2013
```


Figure S88. ¹H NMR spectrum of polypentylene oxalate (Table S1, entry 4).

Figure S89. ¹H NMR spectrum of polyhexylene oxalate (Table S1, entry 5).

Figure S90. ¹H NMR spectrum of polyheptylene oxalate (Table S1, entry 6).

```
Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is \textcircled{O} The Royal Society of Chemistry 2013
```


Figure S91. ¹H NMR spectrum of polyoctylene oxalate (Table S1, entry 7).

Figure S92. ¹H NMR spectrum of polynonylene oxalate (Table S1, entry 8).

Figure S93. ¹H NMR spectrum of polydecylene oxalate (Table S1, entry 9).

```
Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is \textcircled{O} The Royal Society of Chemistry 2013
```


Figure S94. ¹H NMR spectrum of polyundecylene oxalate (Table S1, entry 10).

Figure S95. ¹H NMR spectrum of polydodecylene oxalate (Table S1, entry 11).

Figure S96. ¹H NMR spectrum of poly(decylene-co-RBHE) oxalate [90:10] (Table S2, entry 1).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is O The Royal Society of Chemistry 2013

Figure S97. ¹H NMR spectrum of poly(decylene-co-RBHE) oxalate [80:20] (Table S2, entry 2).

Figure S98. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [70:30] (Table S2, entry 3).

Figure S99. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [60:40] (Table S2, entry 4).

Figure S100. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [50:50] (Table S2, entry 5).

Figure S101. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [40:60] (Table S2, entry 6).

Figure S102. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [30:70] (Table S2, entry 7).

Figure S103. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [20:80] (Table S2, entry 8).

Figure S104. ¹H NMR spectrum of poly(decylene-*co*-RBHE) oxalate [10:90] (Table S2, entry 9).

Figure S105. ¹H NMR spectrum of poly(RBHE) oxalate (Table S2, entry 10).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S106. ¹H NMR spectrum of poly(decylene-co-HBHE) oxalate [90:10] (Table S2, entry 11).

Figure S107. ¹H NMR spectrum of poly(decylene-co-HBHE) oxalate [80:20] (Table S2, entry 12).

Figure S108. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [70:30] (Table S2, entry 13).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is O The Royal Society of Chemistry 2013

Figure S109. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [60:40] (Table S2, entry 14).

Figure S110. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [50:50] (Table S2, entry 15).

Figure S111. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [40:60] (Table S2, entry 16).

Figure S112. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [30:70] (Table S2, entry 17).

Figure S113. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [20:80] (Table S2, entry 18).

Figure S114. ¹H NMR spectrum of poly(decylene-*co*-HBHE) oxalate [10:90] (Table S2, entry 19).

Figure S115. ¹H NMR spectrum of poly(HBHE) oxalate (Table S2, entry 20).

¹³C NMR Spectra

Figure S116. ¹³C NMR spectrum of polypropylene oxalate (Table S1, entry 1).

Figure S117. ¹³C NMR spectrum of polyneopentylene oxalate (Table S1, entry 2).

Figure S118. ¹³C NMR spectrum of polybutylene oxalate (Table S1, entry 3).

Figure S119. ¹³C NMR spectrum of polypentylene oxalate (Table S1, entry 4).

Figure S120. ¹³C NMR spectrum of polyhexylene oxalate (Table S1, entry 5).

Figure S121. ¹³C NMR spectrum of polyheptylene oxalate (Table S1, entry 6).

Figure S122. ¹³C NMR spectrum of polyoctylene oxalate (Table S1, entry 7).

Figure S123. ¹³C NMR spectrum of polynonylene oxalate (Table S1, entry 8).

Figure S124. ¹³C NMR spectrum of polydecylene oxalate (Table S1, entry 9).

Figure S125. ¹³C NMR spectrum of polyundecylene oxalate (Table S1, entry 10).

Figure S126. ¹³C NMR spectrum of polydodecylene oxalate (Table S1, entry 11).

Figure S127. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [90:10] (Table S2, entry 1).

Figure S128. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [80:20] (Table S2, entry 2).

Figure S129. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [70:30] (Table S2, entry 3).

Figure S130. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [60:40] (Table S2, entry 4).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is O The Royal Society of Chemistry 2013

Figure S131. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [50:50] (Table S2, entry 5).

Figure S132. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [40:60] (Table S2, entry 6).

Figure S133. ¹³C NMR spectrum of poly(decylene-co-RBHE) oxalate [30:70] (Table S2, entry 7).

Figure S134. ¹³C NMR spectrum of poly(decylene-co-RBHE) oxalate [20:80] (Table S2, entry 8).

Figure S135. ¹³C NMR spectrum of poly(decylene-*co*-RBHE) oxalate [10:90] (Table S2, entry 9).

Figure S136. ¹³C NMR spectrum of poly(RBHE) oxalate (Table S2, entry 10).

Figure S137. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [90:10] (Table S2, entry 11).

Figure S138. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [80:20] (Table S2, entry 12).

Figure S139. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [70:30] (Table S2, entry 13).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is O The Royal Society of Chemistry 2013

Figure S140. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [60:40] (Table S2, entry 14).

Figure S141. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [50:50] (Table S2, entry 15).

Figure S142. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [40:60] (Table S2, entry 16).

Figure S143. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [30:70] (Table S2, entry 17).

Figure S144. ¹³C NMR spectrum of poly(decylene-*co*-HBHE) oxalate [20:80] (Table S2, entry 18).

Figure S145. ¹³C NMR spectrum of poly(decylene-co-HBHE) oxalate [10:90] (Table S2, entry 19).

Figure S146. ¹³C NMR spectrum of poly(HBHE) oxalate (Table S2, entry 20).

¹H NMR Analysis for Copolymer Composition

To check the incorporation of the aromatic monomer for the polymers of Table 2, the NMR spectrum of **polydecylene oxalate** was compared with that of **poly(resorcinol bis(2-hydroxyethyl)ether) oxalate**. The aliphatic copolymer (polydecylene oxalate) has specific peaks near 1.7 ppm that are assigned to the four hydrogens beta to the ester oxygen.

In contrast, the aromatic copolymer (poly(RBHE) oxalate) shows peaks near 6.5 ppm that correspond to the three hydrogens ortho to oxygen in the aromatic part of the repeat unit.

poly(resorcinol bis(2-hydroxyethyl)ether) oxalate

Aliphatic/aromatic copolymers should show peaks in both regions and by measuring the intensity of these peaks and calculating the ratio, the relative incorporation can be obtained. The figure below shows, respectively, the ¹H NMR spectra of:

- the aliphatic polydecylene oxalate (from Table S1, Entry 9),
- the 60:40 (feed ratio, aliphatic:aromatic) copolymer (from Table S2, Entry 4),
- and the aromatic poly(RBHE) oxalate (from Table S2, Entry 10).

Integration of the peaks for the 60:40 aliphatic:aromatic copolymer spectrum gives an area of 40 related to 4 aliphatic protons at 1.7 ppm and an area of 19.29 related to 3 aromatic protons at 6.5 ppm. Thus we have a [40/4]:[19.29/3] = 10:6.43 ratio of aliphatic:aromatic blocks present. This computes to 10/[10+6.43] = 60.9% aliphatic composition and 6.43/[10+6.43] = 39.1% aromatic composition. This is in close agreement with the 60:40 feed ratio of aliphatic:aromatic monomers employed. All the other compositions (from Table S2) displayed a similar agreement between the feed ratio and the measured incorporation ratio.

In a similar way, the calculation of the aromatic incorporation of the poly(HBHE) oxalate copolymers was calculated. In this case, the four beta hydrogens of the aliphatic segment were compared with the four aromatic hydrogens of the aromatic segment.

Computational Studies of Polyoxalate Segments

Polyoxalate segments were created in the extended chain conformation and subjected to energy minimization with DFT calculations (B3LYP 6-31G*) in the gas phase with MacSpartan '10 software. The extended chain conformation was enforced by locking all dihedral angles at 180°. These are not necessarily conformational minima, but are local minima employed to estimate lengths of the component aliphatic segments (blue) and oxalate segments (red) of the chain. Distances were measured between bond midpoints.

Shown are segments representing polypropylene oxalate, polybutylene oxalate, polypentylene oxalate, and polyhexylene oxalate, respectively.