Supporting Information

Synthesis and Characterization of Thermo-responsive Polypeptoid Bottlebrushes

Samuel H. Lahasky, Lu Lu, Wayne A. Huberty, Jinbao Cao, Li Guo, Jayne C. Garno and Donghui Zhang*

Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge,

Louisiana 70803, United States.

Corresponds to: <u>dhzhang@lsu.edu</u>

Figure S1. (A) ¹H NMR spectra of the Nor-P(NEG₂₇-*r*-NBG₂₁) macromonomer (Entry 1, Table S1) in toluene-d8 and (B) the Nor-P(NEG₃₇-*r*-NBG₁₆) macromonomer (Entry 2, Table S1) in CDCl₃.

Figure S2. (A) Full and (B) expanded MALDI-TOF MS spectra of a norbornenyl-terminated poly(N-ethyl glycine)-*ran*-poly(N-butyl glycine) random copolymer [Nor-P(NEG₄₃-*r*-NBG₃₂)] ($M_n = 2.2$ kg·mol⁻¹, PDI = 1.40 from MS analysis).

Table S1. The molecular weight	t and composition of the polypeptoid macromonomers [Nor-
	$P(NEG_n - r - NBG_m)_{n+m}]$

Entry	$[\mathbf{M}_1]_0: [\mathbf{M}_2]_0: [\mathbf{I}]_0$	Macromonomer composition ^{<i>a</i>}	$M_n (\mathrm{kg}\cdot\mathrm{mol}^{-1})^a$	$M_n (\mathrm{kg}\cdot\mathrm{mol}^{-1})^{\ b}$	PDI
1	33:17:1	Nor-P(NEG ₂₇ - <i>r</i> -NBG ₂₁)	4.7	10.4	1.05
2	38:12:1	Nor-P(NEG ₃₇ - <i>r</i> -NBG ₁₆)	5.0	10.4	1.04
3	42:8:1	Nor-P(NEG ₃₆ - <i>r</i> -NBG ₁₂)	4.4	9.8	1.05
4	45:5:1	Nor-P(NEG ₄₀ -r-NBG ₉)	4.4	9.7	1.05

^{*a*} Determined by integration of the ethyl and butyl methyl peaks relative to the norbornenyl methylene peaks in their respective ¹H NMR spectra in toluene-d₈; ^{*b*} determined from SEC-MALS-DRI chromatography in 0.1 M LiBr/DMF using polystyrene standards (flow rate = $0.5 \text{ mL} \cdot \text{min}^{-1}$).

Figure S3. SEC-DRI chromatograms of the polypeptoid macromonomers [Nor-P(NEG_n-*r*-NBG_m)_{n+m}] (Entry 1-4, Table S1).

Figure S4. Plots of M_n and PDI versus time for the ROMP reaction of Nor-P(NEG₄₀-*r*-NBG₉) (conditions: [Nor]₀/[Ru]₀=150:1, [Nor]₀= 0.01M, 40 °C, CH₂Cl₂).

Figure S5. Representative SEC-DRI chromatograms of the polypeptoid macromonomer [Nor- $P(NEG_{37}-r-NBG_{16})$, ---] and the corresponding bottlebrush copolymer before (---) and after (---) purification by centrifugal dialysis.

Figure S6. ¹H NMR spectrum of the PNor₂₅-g-P(NEG₃₇-r-NBG₁₆) bottlebrush copolymer (Entry 2, Table 1) in CDCl₃.

Figure S7. SEC-DRI chromatograms of the polypeptoid bottlebrushes having the same backbone length and various side chain compositions (Entries 1-3 and 5, Table 1).

Figure S8. (A) Transmittance versus temperature plots for the as-prepared (---) and thermally annealed aqueous solutions (—) of the bottlebrush copolypeptoid PNor₂₅-*g*-P(NEG₂₇-*r*-NBG₂₁) (Entry 1, Table 1) and (B) PNor₂₅-*g*-P(NEG₃₆-*r*-NBG₁₂) (Entry 3, Table 1).

Figure S9. Dynamic light scattering (DLS) analysis of aqueous solutions (1.0 mg·ml⁻¹) containing asprepared (—) or thermally-annealed PNor₂₅-*g*-P(NEG₂₇-*r*-NBG₂₁) sample (—) (Entry 1, Table 1) at 25 °C.

Figure S10. Transmittance versus temperature plots of the polypeptoid macromonomer [Nor- $P(NEG_{27}-r-NBG_{21})$] (Entry 1, Table S1) in aqueous solutions with varying NaCl concentrations.

Figure S11. Transmittance versus temperature plot of the polypeptoid bottlebrush [PNor₂₅-*g*-P(NEG₂₇*r*-NBG₂₁)] (Entry 1, Table 1) in aqueous solutions with varying NaCl concentrations.

Figure S12. Transmittance versus temperature plots of the polypeptoid macromonomer [Nor-P(NEG₃₇-*r*-NBG₁₆)] (Entry 2, Table S1) in aqueous solutions with varying NaCl concentrations.

Figure S13. Transmittance versus temperature plots of the polypeptoid bottlebrush [PNor₂₅-g-P(NEG₃₇-r-NBG₁₆)] (Entry 2, Table 1) in aqueous solutions with varying NaCl concentrations. The solutions are either subjected to the turbidity measurement directly (as-prepared) or thermally annealed at 75 °C for 10 min followed by cooling at 4 °C overnight prior to the turbidity measurement.

Figure S14. Transmittance versus temperature plots of the polypeptoid macromonomer (Nor- $P(NEG_{36}-r-NBG_{12})$ (Entry 3, Table S1) in aqueous solutions with varying NaCl concentrations.

Figure S15. Transmittance versus temperature plots of the polypeptoid bottlebrush [PNor₂₅-g-P (NEG₃₆-r-NBG₁₂)] (Entry 3, Table 1) in aqueous solutions with varying NaCl concentrations. The solutions are either subjected to the turbidity measurement directly (as-prepared) or thermally annealed at 75 °C for 10 min followed by cooling at 4 °C overnight prior to the turbidity measurement.

Figure S16. Transmittance versus temperature plots of the polypeptoid macromonomer (Nor- $P(NEG_{40}-r-NBG_9)$ (Entry 4, Table S1) in aqueous solutions with varying NaCl concentrations.

Figure S17. Transmittance versus temperature plots of the polypeptoid bottlebrush [PNor₂₅-g-P(NEG₄₀-r-NBG₉)] (Entry 5, Table 1) in aqueous solutions with varying NaCl concentrations. The solutions are either subjected to the turbidity measurement directly (as-prepared) or thermally annealed at 75 °C for 10 min followed by cooling at 4 °C overnight prior to the turbidity measurement.

Table S2. T_{cp} and the T_{cp} transition window (TW) of polypeptoid macromon	omers [Nor-P(NEG _m - <i>r</i> -
NBG _n)] in aqueous solutions with varying NaCl concentra	tions.

Entry	Macromonomer composition	[NaCl]	$T_{cp} (^{o}C)^{a}$	TW (°C) ^b
1	Nor-P(NEG ₂₇ -r-NBG ₂₁)	0.5	34.2	13.6
		0.25	37.5	12.9
		0.1	39.1	15.3
		0.01	40.4	18.3
		0.0	40.1	14.7
2	Nor-P(NEG ₃₇ -r-NBG ₁₆)	0.50	47.7	16.6
		0.25	54.6	21.8
		0.0	62.1	11.5
3	Nor-P(NEG ₃₆ - <i>r</i> -NBG ₁₂)	2.0	44.2	16.9
		1.0	59.9	12.3
		0.5	69.4	16.3
4	Nor-P(NEG ₄₀ - <i>r</i> -NBG ₉)	2.0	62.4	22.7
		1.0	75.5	12.0
		0.5	95.8	- ^C

^{*a.*} Determined by turbidity measurements using an optical microscope. $T_{cp}s$ were considered to be the temperature at 50% transmittance; ^{*b.*} T_{cp} transition window (TW) is the temperature at 10% transmittance minus the temperature at 90% transmittance; ^{*c.*} TW could not be accurately obtained.

Entry	Bottlebrush composition	[NaCl]	T_{cp} (°C) ^{<i>a</i>}	TW ($^{\circ}$ C) b
1	PNor ₂₅ - <i>g</i> -P(NEG ₂₇ - <i>r</i> -NBG ₂₁)	0.25	32.4	4.8
		0.1	34.1	4
		0.01	37	16.3
		0.0	37.3	24.6
2	PNor ₂₅ - <i>g</i> -P(NEG ₃₇ - <i>r</i> -NBG ₁₆)	1	35.3	4.3
		0.5	41.5	4.6
		0.25	43.2	5.1
		0.0	47.2	9.2
3	PNor ₂₅ - <i>g</i> -P(NEG ₃₆ - <i>r</i> -NBG ₁₂)	2	35.1	6
		1	47.6	8.4
		0.5	53.1	4.8
		0.25	57.8	4.8
		0.1	63.8	5
		0.0	65.6	13
4	$PNor_{25}-g-P(NEG_{40}-r-NBG_9)$	1	59.5	4.7
		0.5	69.9	6.3
		2	44.4	6.7
		0.0	78.8	18.8
-				

Table S3. T_{cp} and the T_{cp} transition window (TW) of polypeptoid bottlebrushes [PNor_x-*g*-P(NEG_m-*r*-NBG_n)] (Entry 1-3 and 5, Table 1) in aqueous solutions with varying NaCl concentrations.

^{*a.*} Determined by turbidity measurements using an optical microscope. $T_{cp}s$ were considered to be the temperature at 50% transmittance; ^{*b.*} T_{cp} transition window (TW) is the temperature at 10% transmittance minus the temperature at 90% transmittance.

Figure S18. (A) Transmittance versus temperature plots of the polypeptoid bottlebrush [PNor₂₅-g-P(NEG₃₆-r-NBG₁₂)] (Entry 3, Table 1) in aqueous solutions with varying NaF, (B) NaCl and (C) NaBr concentrations.

Table S4. T_{cp} of the polypeptoid bottlebrush PNor₂₅-*g*-P(NEG₃₆-*r*-NBG₁₂) (Entry 3, Table 1) in aqueous solutions with various inorganic salt concentrations

[Salt]	T_{cp}^{NaCl}	T_{cp}^{NaF}	T_{cp}^{NaBr}
(M)	(°C) <i>a</i>	(°C) <i>a</i>	(°C) <i>a</i>
0.05	<i>C</i>	<i>c</i>	64
0.075	C	63.4	C
0.1	63.8	61.9	C
0.25	57.8	51.6	61.1
0.5	53.1	41.9	59.9
1.0	47.6	26.2	56.7
2.0	35.1	b	50.1

^{*a.*} Determined by turbidity measurements using an optical microscope. $T_{cp}s$ were considered to be the temperature at 50% transmittance; ^{*b.*} samples were not soluble in the corresponding NaCl/H₂O solution at room temperature; ^{*c.*} samples were not analyzed by turbidity measurements at the given salt concentration.

Figure S19. (A) Full and (B) expanded SEM images of the bottlebrush copolymers [PNor₂₅-g-P(NEG₄₀-r-NBG₉)] that precipitated from the aqueous solution after being held at 80 °C overnight. The sample used in SEM analysis was obtained by lyophilizing a 2.0 mg·mL⁻¹ polymer suspension.

Figure S20. The shapes and distributions of bottlebrush polypeptoids sample PNor₁₅₀-*g*-P(NEG₃₆-*r*-NBG₁₂) (Entry 4, Table 1) viewed with AFM. Topographs and corresponding phase images of (A) $6 \times 6 \text{ um}^2$; (B) $4 \times 4 \text{ um}^2$; (C) $1.5 \times 1.5 \text{ um}^2$ areas.