Supporting Information

<u>Blocked isocyanates: An efficient tool for the post-polymerization modification of polymers</u>

Stefan Bode, Marcel Enke, Helmar Görls, Stephanie Hoeppener, Ralf Weberskirch, Martin D. Hager,* Ulrich S. Schubert*

Figures:

a)

b)

Figure S1: Characterization of 1: a) ¹H NMR spectrum (CDCl₃) and b) ATR-FT-IR-spectrum.

Figure S2: Characterization of **2**: a) ¹H NMR spectrum (CDCl₃) and b) ATR-FT-IR-spectrum.

Figure S3: Crystal structure of **1** (hydrogen bonds as dotted lines).

Figure S4: Conversion-time diagram for the reaction of the blocked isocyanate (1) with methanol.

ATR signal / a.u.

3500

3000

2000

Wavenumber / cm⁻¹

1500

1000

c)

Figure S5: Characterization of **P1a**: a) ¹H NMR spectrum (CD₂Cl₂), b) ATR-FT-IR-spectrum and c) UV-Vis-spectrum (in CHCl₃).

Figure S6: SEC curve of polymers P2a (eluent DMAc + 0.21% LiCl).

Figure S7: Characterization of **P2a**: a) ¹H NMR spectrum (CD_2Cl_2) and b) ATR-FT-IR-spectrum.

Figure S8: SEC curve of polymers P3a (eluent DMAc + 0.21% LiCl).

a)

Figure S9: Characterization of **P3a**: a) ATR-FT-IR-spectrum and b) UV-Vis spectrum (in CHCl₃).

Figure S10: Characterization of **P5**: a) UV-Vis spectrum (in DMAc + 0.21% LiCl) and b) 1 H NMR spectrum in CDCl₃.

a)

d)

Figure S11: Characterization of **P6b**: a) ¹H NMR spectrum in $CDCl_3$, b) SEC curve eluent DMAc + 0.21% LiCl, c) MALDI-ToF-MS spectrum and d) zoom of the MS spectrum.

d)

Figure S12: Characterization of **P7b**: a) ¹H NMR spectrum in $CDCl_3$, b) SEC curve eluent DMAc + 0.21% LiCl, c) MALDI-ToF-MS spectrum and d) zoom of the MS spectrum.

Figure S13: ¹H and ¹³C NMR spectra of a) 2,5-dihexyloxy-1,4-diethynyl-benzene and b) 2,5-dihexyloxy-1,4-diiodo-benzene.

Figure S14: Characterization of **P8**: a) ¹H NMR spectrum in CD₂Cl₂ and b) SEC curve (chloroform/*iso*-propanol/triethylamine [94/2/4]; UV-Vis detector, $\lambda = 340$ nm).

Figure S14: Characterization of **P9**: a) ¹H NMR spectrum in CD₂Cl₂ and b) SEC curve (chloroform/*iso*-propanol/triethylamine [94/2/4]; UV-Vis detector, $\lambda = 340$ nm).

Schemes:

Scheme S1: Schematic representation of the synthesis of **P7**.

Scheme S2: Schematic representation of the synthesis of P8.

Experimental Section:

3,5-Dimethylpyrazole blocked isocyanate (1):^[S1]

11.5 g of 3,5-Dimethylpyrazole (0.12 mol) and 0.02 g dibutlytin laurate were dissolved in 120 mL dry toluene. Subsequently,

10 g hexamethylene diisocyanate (0.06 mol), which were dissolved in 25 mL dry toluene, were added slowly to the reaction mixture. Afterwards the solution was refluxed for 3 hours.

Subsequently, the reaction mixture was cooled down and stored at 0 °C overnight. Thus, a white precipitate formed which was isolated by filtration, washed with cold toluene and dried *in vacuo* at 50 °C.

Yield: 20.2 g of a white solid, 94%

¹**H NMR** (250 MHz, CDCl₃, δ): 1.39 – 1.60 (m, 8H, -CH₂), 2.19 (s, 3H, -CH₃), 2.54 (s, 3H, -CH₃), 3.34 (q, *J* = 6.5 Hz, 4H, HN-CH₂), 5.89 (s, 2H, =CH), 7.24 (s, 2H, -NH) ppm. ¹³**C NMR** (62.5 MHz, CDCl₃, δ): 13.5 (CH₃), 13.9 (CH₃), 26.5 (CH₂), 29.6(CH₂), 39.9 (CH₂), 109.6 (*C*_{Py}), 143.4(*C*_{Py}), 149.9(*C*_{Py}), 151.4 (CO) ppm.

Anal. calcd. for C₁₈H₂₈N₆O₂: C 59.98, H 7.83, N 23.32; found: C 60.03, H 7.96, N 23.37.

Crystal Data for **1**: $C_{18}H_{28}N_6O_2$, Mr = 360.46 gmol⁻¹, colorless prism, size $0.06 \times 0.06 \times 0.06$ mm³, monoclinic, space group P 2₁/c, a = 8.1867(4), b = 9.2410(3), c = 12.6932(6) Å, β = 92.520(2)°, V = 959.35(7) Å³, T= -140 °C, Z = 2, $\rho_{calcd.}$ = 1.248 gcm⁻³, μ (Mo-K_{α}) = .85 cm⁻¹, multi-scan, F(000) = 388, 5200 reflections in h(-8/10), k(-11/11), l(-15/14), measured in the range 2.73° $\leq \Theta \leq$ 26.37°, completeness Θ_{max} = 99.5%, 1957 independent reflections, R_{int} = 0.0624, 1614 reflections with F_o > 4 σ (F_o), 174 parameters, 0 restraints, R1_{obs} = 0.0485, wR²_{obs} = 0.1060, R1_{all} = 0.0622, wR²_{all} = 0.1142, GOOF = 1.085, largest difference peak and hole: 0.292 / -0.226 e Å⁻³.

Pyrzaol blocked isocyanate (2):^[S1]

2.85 g of Pyrazole (0.042 mol) and 0.01 g dibutlytin dilaurate were dissolved in 120 mL dry toluene. Subsequently, 3.5 g

hexamethylene diisocyanate (0.021 mol), which were dissolved in 50 mL dry toluene, were added slowly to the reaction mixture. Afterwards the solution was refluxed for 3 hours.

Subsequently, the reaction mixture was cooled down and stored at 0 $^{\circ}$ C overnight. Thus, a white precipitate formed which was isolated by filtration, washed with cold toluene and dried *in vacuo* at 50 $^{\circ}$ C.

Yield: 5.9 g of a white solid, 92%

¹**H** NMR (250 MHz, CDCl₃, *δ*): 1.40 – 1.62 (m, 8H, -CH₂), 3.42 (q, *J* = 6.75 Hz, 4H, HN-CH₂), 6.38 (dd, *J* = 2.5 Hz, *J* = 1 Hz, 2H, =CH), 7.19 (s, 2H, -NH), 7.58 (d, *J* = 1 Hz, 2H, =CH), 8.22 (d, *J* = 2.5 Hz, 2H, =CH) ppm.

¹³**C NMR** (62.5 MHz, CDCl₃, *δ*): 26.4 (*C*H₂), 29.5(*C*H₂), 40.1 (*C*H₂), 108.2 (*C*_{Py}), 128.5 (*C*_{Py}), 141.9(*C*_{Py}), 159.7 (*C*O) ppm.

Anal. calcd. for C₁₄H₂₀N₆O₂: C 55.25, H 6.62, N 27.61; found: C 55.10, H 6.72, N 27.71.

References:

[S1] A. Mühlebach, J. Polym. Sci., Part A: Polym. Chem., 1994, 32, 753–765.