Supporting Information for

## Sunlight-induced Crosslinking of 1,2-Polybutadienes: Access to Fluorescent Polymer Networks

Jan O. Mueller,<sup>a,b</sup> Nathalie K. Guimard,<sup>a,b,c</sup> Kim K. Oehlenschlaeger,<sup>a,b</sup> Friedrich G. Schmidt,<sup>d</sup> Christopher Barner-Kowollik<sup>\*a,b</sup>

<sup>a</sup> Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany.

<sup>b</sup> Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

<sup>c</sup> INM - Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2, 66123 Saarbrücken, Germany.

<sup>d</sup> Evonik Industries AG, Paul-Baumann-Strasse 1, 45764 Marl, Germany.

**Materials.** Formyl-benzoic acid (96 %, Acros Organics), *p*-toluenesulfonyl hydrazide (98 %, Alfa Aesar), pyridine (99 %, ABCR), anisidine (99 %, ABCR), HCl (37 %, Roth), sodium nitrite (NaNO<sub>2</sub>, 98 %, Alfa Aesar) thionyl chloride (SOCl<sub>2</sub>, 99.5 %, Acros Organics), polybutadiene predominantly 1,2-addition (**PBD-1**, approx. 90% 1,2-vinyl, Sigma-Aldrich), and tetrahydrofuran (THF, 99.5 % extra dry, Acros Organics) were used as received. 1,2-polybutadiene (JSR RB\_820, **PBD-2**) was kindly provided by NRC (Nordmann, Rassmann).

**Characterization.** *Size exclusion chromatography (SEC)*. To determine molecular weight distributions (MWD) a SEC system (Polymer Laboratories PL-GPC 50 Plus) comprised of an auto injector, a guard column (PLgel Mixed C,  $50 \times 7.5$  mm) followed by three linear columns (PLgel Mixed C,  $300 \times 7.5$  mm, 5 µm bead-size) and a differential refractive index detector was employed. THF was used as the eluent at 35 °C, with a flow rate of 1 mL·min<sup>-1</sup>. The SEC system was calibrated using narrow poly(methyl methacrylate) standards ranging from 600 to  $6 \times 105$  g mol<sup>-1</sup> (Polymer Standards Service (PSS), Mainz, Germany). The resulting molecular weight distributions were determined by universal calibration using Mark-Houwink parameters for polystyrene ( $K = 14.1 \times 10^{-5}$  dL g<sup>-1</sup>,  $\alpha = 0.7$ ).

*NMR spectroscopy*. Bruker AM 250 (250 MHz) and Bruker AM 400 (400 MHz) spectrometers were used for the <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopy, respectively. Samples were characterized using CDCl<sub>3</sub> as the solvent. The  $\delta$ -scale is referenced to the internal standard trimethylsilane (TMS,  $\delta$  = 0.00 ppm).

*Electrospray ionization - mass spectrometry (ESI-MS)*. ESI-MS spectra were recorded on a LXQ mass spectrometer (ThermoFisher Scientific, San Jose, CA, USA) equipped with an atmospheric pressure ionization source operating in the nebulizer assisted electrospray mode.

The instrument was calibrated in the m/z range of 195-1822 using a standard containing caffeine, Met-Arg-Phe-Ala acetate (MRFA) and a mixture of fluorinated phosphazenes (Ultramark 1621) (all from Aldrich). A constant spray voltage of 4.5 kV was used. Nitrogen was applied at a dimensionless sweep gas flow-rate of 2 (approx. 3 L min<sup>-1</sup>) and a dimensionless sheath gas flowrate of 12 (approx. 1 L min<sup>-1</sup>) were applied. The capillary voltage, the tube lens offset voltage and the capillary temperature were set to 60 V, 110 V, and 275 °C respectively.

*Fluorescence and UV-Vis spectroscopy.* Fluorescence emission spectra were recorded for samples in quartz cuvettes loaded with a sample volume of 230  $\mu$ L on a Varian Cary Eclipse Fluorescence Spectrometer. UV-Visible spectroscopy was performed using a Varian Cary 300 Bio spectrophotometer featuring a thermostatted sample cell holder. Absorption spectra were measured for  $1.0 \times 10^{-4}$  mol L<sup>-1</sup> samples in acetonitrile solution from 200 to 800 nm with a resolution of 1 nm and slit width of 2 nm in a 1 cm UV cuvette.

Spectroscopic data of di-linker.



Figure S1. <sup>1</sup>H-NMR spectrum of di-linker in CDCl<sub>3</sub>.



Figure S2. <sup>13</sup>C-NMR spectrum of di-linker in CDCl<sub>3</sub>.

## UV-lamp specifications.

- Arimed B6, Cosmedico GmBH, Stuttgart, Germany. Compact low-pressure fluorescent lamp, 36 W,  $\lambda_{max} = 320$  nm (±30 nm).
- *Philips Cleo PL-L*, Philips Deutschland GmBH. Compact low-pressure fluorescent lamp, 36 W, λ<sub>max</sub> = 355 nm (±50 nm).
- *Philips TL01*, Philips Deutschland GmBH. Philips Medical Therapy UV-B Narrow Band/01, 36W  $\lambda_{max} = 312$  nm (±5 nm).



Figure S3. Illustration of the custom-built photoreactor employed in the current study.



## Additional mass spectra concerning the small molecule model study.

**Figure S4.** Kinetic investigation of the small molecule model reaction between 1-pentene and the **di-linker** employing the *Philips TL01* UV-lamp. a) ESI-MS spectra after 0, 5, 10, and 20 min of reaction time. b) graph of the relative abundance of di-linker, mono-functionalized intermediate (2) and di-functionalized product (3) as a function of irradiation time determined from integration of the corresponding ESI-MS spectra.



**Figure S5.** Kinetic investigation of the small molecule model reaction between 1-pentene and the **di-linker** employing the *Philips Cleo PL-L* UV-lamp. a) ESI-MS spectra after 0, 5, 10, 20, and 60 min of reaction time. b) graph of the relative abundance of di-linker, mono-functionalized intermediate (2) and di-functionalized product (3) as a function of irradiation time determined via integration of the corresponding ESI-MS spectra.



**Figure S6.** Kinetic investigation of the small molecule model reaction between 1-pentene and the **di-linker** in sunlight. a) ESI-MS spectra after 0, 10, 30, 120 and 240 min of reaction time. b) graph of the relative abundance of di-linker, mono-functionalized intermediate (2) and di-functionalized product (3) as a function of irradiation time determined from integration of the corresponding ESI-MS spectra.



**Figure S7.** a) ESI-MS spectra of the reaction mixtures of the **di-linker** and 1-pentene with varying equivalents of the dipolarophile (1-pentene). b) SEC elugram of the dimerization reaction of the **di-linker** in THF. The reactions were performed at a **di-linker** concentration of 0.1 mg mL<sup>-1</sup> under irradiation with the *Arimed B6* UV-lamp for 1 h.

## Spectroscopic data of product 3.



**Figure S8**: <sup>1</sup>H-NMR spectrum of **3** in CDCl<sub>3</sub>. The signals referring to the main isomer are labeled in the depicted structure.