Electronic Supporting Information

Structure-dependent emission of polytriazoles

Engui Zhao, ${ }^{b}$ Hongkun Li, ${ }^{a, b}$ Jun Ling, ${ }^{a}$ Haiqiang Wu, ${ }^{a}$ Jian Wang, ${ }^{a}$ Shuang Zhang, ${ }^{a}$

Jacky W. Y. Lam, ${ }^{b}$ Jing Zhi Sun, ${ }^{a}$ Anjun Qin* ${ }^{a, c}$ and Ben Zhong Tang* ${ }^{a, b, c}$

[^0]
Table of Contents

Monomer Preparation S3
Scheme S1 Synthetic route to 4-methylbenzenesulfonyl azide 8. S3
Scheme S2 Synthetic routes to 2,7-diazido-9,9-dioctyl-9H-fluorene 1. S4
Scheme S3 Synthetic routes to 1,2-bis(4-ethynylphenyl)-1,2-diphenylethene 2a. S5
Scheme S4 Synthetic routes to 1,2-bis(4-ethynylphenyl)ethane 2b. S7
Scheme S5 Synthetic routes to 2,7-diethynyl-9,9-dioctyl-9H-fluorene 4. S8
Scheme S6 Synthetic routes to 1,2-bis(4-azidophenyl)-1,2-diphenylethene 5a. S9
Scheme S7 Synthetic routes to 1,2-bis(4-azidophenyl)ethane 5b. S9
Scheme S8 Synthetic routes to 2-azido-9,9-dioctyl-9H-fluorene 23. S10Fig. S1 TGA thermograms of P3a, P3b, P6a and P6b recorded under nitrogen at aheating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$.
Fig. S2 IR spectra of monomers (A) $\mathbf{1}$ and (B) 2b and (C) their polymer P3b. S12
Fig. S3 IR spectra of (A) monomers 4 and (B) 5a and (C) their polymer P6a.S13
Fig. S4 IR spectra of (A) monomers 4 and (B) 5b and (C) their polymer P6b. S13

Fig. S5 ${ }^{1} \mathrm{H}$ NMR spectra of (A) monomer 1, (B) monomer $\mathbf{2 b}$, (C) model compound M2 and (D) polymer P 3 b in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectra of (A) monomer 4, (B) monomer 5a, and (C) polymer P6a in CDCl_{3}. The solvent and water peaks are marked with asterisks.S15

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectra of (A) monomer $\mathbf{4}$, (B) monomer $\mathbf{5 b}$, and (C) polymer P6b in CDCl_{3}. The solvent and water peaks are marked with asterisks.S16

Fig. S8 UV absorption spectra M1 and M2 in THF solutions; concentration: $10 \mu \mathrm{M}$.

Fig. S9 Particle size analysis of the nano-aggregates of (A) P3a and (B) P3b in THF/water mixtures with water fraction of 90%. Concentration: $10 \mu \mathrm{M}$.

Fig. S10 (A) PL spectra of P3a in THF/methanol mixtures with different methanol fraction; excitation wavelength: 337; polymer concentration: $10 \mu \mathrm{M}$. (B) Plot of relative emission intensity versus methanol fraction in THF/methanol mixtures.

Fig. S11 (A) PL spectra of P3b in THF/methanol mixtures with different methanol fraction; excitation wavelength: 358; polymer concentration: $10 \mu \mathrm{M}$. (B) Plot of relative emission intensity versus methanol fraction in THF/methanol mixtures.

Fig. S12 Cyclic voltammograms of P3a and P6a in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.1 \mathrm{M}\left[{ }_{n} \mathrm{Bu} 4 \mathrm{~N}\right]+[\mathrm{PF} 6]$ at 100 mV / s.

Table S1 The HOMO and LUMO level, and energy gap values of theoretical estimation of P3a-M and P6a-M, and experimental measurement of P3a and P6a.

Monomer Preparation

Scheme S1 Synthetic route to 4-methylbenzenesulfonyl azide 8.
4-Methylbenzenesulfonyl azide (8)Into a 250 mL two-necked round-bottom flask was placed $0.72 \mathrm{~g}(11 \mathrm{mmol})$ of sodium azide in ethanol $(30 \mathrm{~mL})$. Then $1.91 \mathrm{~g}(10 \mathrm{mmol})$ of 4-toluene sulfonyl chloride (7) dissolved in 50 mL of acetone was added. The reaction mixture was stirred at room temperature overnight. After removal the solvent with rotatory evaporator, the crude product was dissolved in DCM and washed with water. Light yellow liquid was obtained in 92.1% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{TMS}$, ppm): 7.83 (d, 2H), $7.40(\mathrm{~d}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.

Scheme S2 Synthetic routes to 2,7-diazido-9,9-dioctyl-9H-fluorene 1.
2,7-Diiodo-9H-fluorene (10)

Into a 250 mL two-necked round-bottom flask was placed $5.07 \mathrm{~g}(30 \mathrm{mmol})$ of fluorene (9). Then the mixture (100 mL) of acetate acid, water and concentrated sulfate acid (100/20/3, V/V/V) was added. The reaction mixture was heated to reflux (about $140{ }^{\circ} \mathrm{C}$) and the solid was completely dissolved. Then it was cooled down to $65^{\circ} \mathrm{C}$, and $6.38 \mathrm{~g}(25$ $\mathrm{mmol})$ of iodine and $2.91 \mathrm{~g}(12.5 \mathrm{mmol})$ of periodic acid were added. The solution was stirred at $65^{\circ} \mathrm{C}$ for 4 h and then cooled to room temperature. The reaction mixture was extracted with DCM, and the collected organic layer was washed with sodium carbonate and sodium thiosulphate solution. After recrystallization from ethyl acetate, slightly yellow powder was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~d}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H})$.

2,7-Diiodo-9,9-dioctyl-9H-fluorene (11)

Into a 250 mL two-necked round-bottom flask was added $2.11 \mathrm{~g}(5 \mathrm{mmol})$ of 2,7-diiodo-9H-fluorene (10) in DMSO (50 mL). $1.44 \mathrm{~g}(7.5 \mathrm{mmol})$ of 1-bromooctane were added sequentially. After stirring at room temperature overnight, the reaction mixture was neutralized by hydrochloric acid (1 M) till the solution become light yellow. Then the solution was extracted with diethyl ether. After solvent evaporation, the crude product was purified by silica-gel chromatography column. A slightly yellow solid was obtained
in 56.0% yield $(1.80 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): $7.65(\mathrm{~d}, 4 \mathrm{H}), 7.40$ $(\mathrm{d}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H}), 1.27-0.99(\mathrm{~m}, 20 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}), 0.57(\mathrm{~m}, 4 \mathrm{H})$.

2,7-Diazido-9,9-dioctyl-9H-fluorene (1)

Into a 250 mL two-necked round-bottom flask was added 1.61 g (2.5 mmol) 2,7-diiodo-9,9-dioctyl-9H-fluorene (11). The flask was evacuated under vacuum and purged with dry nitrogen three times for 1 h . Then freshly distilled THF (50 mL) was injected to dissolve the solid. The solution was cooled to $-78^{\circ} \mathrm{C}$ and 2.3 mL of n-butyllithium (2.5 M in hexane, 5.75 mmol) was added dropwise. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}, 1.13 \mathrm{~g}$ (5.75 mmol) of 4-Methylbenzenesulfonyl azide ($\mathbf{8}$) in 10 mL THF was injected. The reaction mixture was stirred at room temperature overnight. Afterwards, a small amount of water was added to quench the reaction and the solution was extracted with DCM. The organic phase was separated and dried over MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by a silica-gel chromatography column to give yellow-brown solid in 47.4% yield $(0.56 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{TMS}$, ppm): $7.60(\mathrm{~d}, 2 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}), 1.25-0.99(\mathrm{~m}, 20 \mathrm{H}), 0.82(\mathrm{t}$, $6 \mathrm{H}), 0.57(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 152.47,138.63,137.50$, $120.44,117.78,113.47,55.35,40.27,31.66,29.78,29.09,23.55,22.49,13.96$. IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 2925,2854,2104,1608,1462,1292,812,671$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{6}$: C, 73.69; H, 8.53; N, 17.78. Found: C, 73.67; H, 8.66; N, 17.73.

Scheme S3 Synthetic routes to 1,2-bis(4-ethynylphenyl)-1,2-diphenylethene 2a.

Into a 250 mL two-necked round-bottom flask equipped with a condenser was placed 5.01 g of (19.2 mmol) of 4-bromobenzophenone (12). $670 \mathrm{mg}(0.96 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, 370 \mathrm{mg}(1.92 \mathrm{mmol})$ of CuI and $500 \mathrm{mg}(1.92 \mathrm{mmol})$ of PPh_{3} were added under nitrogen. 50 mL of THF and 40 mL of triethyl amine were then injected. After the catalysts were completely dissolved, 3.03 mL (23.1 mmol) of trimethylsilyl acetylene was injected and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . An appropriate amount of hydrochloric acid (1 M) was added and the solution was extracted with DCM. The organic layers were collected and dried over anhydrous MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by a silica gel column. A white solid was obtained in 99.2% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.77 (d, 2H), 7.75 (d, 2H), 7.57 (m, 3H), 7.48 (m, 2H), 0.27 (s, 9H).

1,2-Bis\{4-[2-(trimethylsilyl)ethynyl]phenyl\}-1,2-diphenylethene (14)

Into a 250 mL two-necked round-bottom flask equipped with a reflux condenser were added $1.41 \mathrm{~g}(21.6 \mathrm{mmol})$ of zinc dust and $3.0 \mathrm{~g} \quad(10.8 \mathrm{mmol})$ 4-(2trimethylsilylethynyl)benzophenone (13). The flask was evacuated under vacuum and flushed with dry nitrogen three times for 1 h . Freshly distilled THF (100 mL) was then injected. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $1.41 \mathrm{~mL}(10.08 \mathrm{mmol})$ of titanium tetrachloride was added dropwise. The mixture was allowed to warm to room temperature and then refluxed overnight. The reaction was quenched with 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution. After extraction with DCM , combination of the organic phase and removal of the organic solvent with ratatory evaporator, the crude prodcut was purified by a silica-gel chromatography column. A white product was obtained in 82.9% yield $(2.35 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.23-7.17 (m, 4H), 7.13-7.06 (m, $6 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 8 \mathrm{H}), 0.22(\mathrm{~d}, 18 \mathrm{H})$.

1,2-Bis(4-ethynylphenyl)-1,2-diphenylethene (2a)

Into a 250 mL two-necked round-bottom flask was placed $2.23 \mathrm{~g}(4.0 \mathrm{mmol})$ of 1,2Bis \{4-[2-(trimethylsilyl)ethynyl]phenyl\}-1,2-diphenylethene (14) in THF (50 mL). Then $1.44 \mathrm{~g}(24.4 \mathrm{mmol})$ of KOH dissolved in ethanol was added. The mixture was stirred at room temperature overnight and the reaction was quenched by hydrochloric acid (1 M).

The resulting mixture was extracted with DCM. The organic layers were combined and dried over anhydrous MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by a silica-gel column. A slightly yellow solid was obtained in 85.9% yield. IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 3288,3028,2104,1712,1599,1496,1442,1360,1223,1105$, $1024,974,916,829,766,611,517 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.27$7.20(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 8 \mathrm{H}) 3.03(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}), δ (TMS, ppm): 144.10, 143.99, 142.88, 142.79, 140.84, 131.57, 131.43, 131.20, 131.16, 127.88, 127.72, 126.85, 126.74, 120.13, 119.98, 83.63, 77.42. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{20}$: C, 94.70 ; H, 5.30; Found: C, $94.28 ;$ H, 5.43.

Scheme S4 Synthetic routes to 1,2-bis(4-ethynylphenyl)ethane 2b.
4-[(Trimethylsilyl)ethynyl]benzaldehyde (16)
16 was prepared by the similar procedures to those of 13 . Slightly yellow solid; yield 60.2%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 9.97 (s, 1 H), 7.84-7.80 (m, 2H), 7.63-7.58 (m, 2H), 0.26 (s, 9H).

1,2-Bis[4-(trimethylsilylethynyl)phenyl]ethene (17)
17 was prepared by the similar procedures to those of 14 . White solid; yield $69.0 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.51-7.40 (m, 8H), 7.07 (s, 2H), 0.26 (s, 18H).

1,2-Bis(4-ethynylphenyl)ethene (2b)
$\mathbf{2 b}$ was prepared by the similar procedures to those of 2a. Yellow solid; yield 96.6%. IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 3269,3020,1919,1504,1411,1330,1298,1243,1107,974,837$, $735,623,553,461 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.50-7.43 (d, 8H), 7.08 $(\mathrm{s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 137.3, 132.4, 128.9,
126.4, 121.3, 83.6, 78.0. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12}$: C, 94.70 ; H, 5.30. Found: C, 94.33; H, 5.32.

Scheme S5 Synthetic routes to 2,7-diethynyl-9,9-dioctyl-9H-fluorene 4.
(9,9-Dioctyl-9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl)bis(trimethyl-silane) (18)

18 was prepared by the similar procedures to those of $\mathbf{1 3}$. Yellow solid; yield 82.3%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.59 (d, 2H), 7.45 (d, 2H), 7.41(s, 2H), 1.92 (m, $4 \mathrm{H}), 1.27-0.96(\mathrm{~m}, 20 \mathrm{H}), 0.82(\mathrm{t}, 6 \mathrm{H}), 0.50(\mathrm{~m}, 4 \mathrm{H}), 0.28(\mathrm{~s}, 18 \mathrm{H})$.

2,7-Diethynyl-9,9-dioctyl-9H-fluorene (4)

Into a 250 mL two-necked round-bottom flask was placed $0.87 \mathrm{~g}(1.5 \mathrm{mmol})$ of $(9,9-$ dioctyl-9H-fluorene-2,7-diyl)bis(ethyne-2,1-diyl)bis(trimethyl-silane) (18) in THF (50 $\mathrm{Ml})$. Then 0.72 g (12 mmol) of KOH dissolved in ethanol was added. After stirring at room temperature overnight, the reaction was quenched by hydrochloric acid (1 M). The resulting mixture was then extracted with DCM. The organic layers were combined and the solvent was removed with rotator evaporator. The crude product was purified by a silica-gel chromatography column. A yellow solid was obtained in 96.6% yield (0.68 g). IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 3734,3622,3301,2925,2854,2105,1741,1516,1462,1399$, 1205, 893, 823, 654, 604, 517. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{TMS}, \mathrm{ppm}): 7.63(\mathrm{~d}, 2 \mathrm{H})$, 7.51-7.44 (t, 4H), 3.15 ($\mathrm{s}, 2 \mathrm{H}$), $1.94(\mathrm{~m}, 4 \mathrm{H}), 1.25-0.99(\mathrm{~m}, 20 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}), 0.57(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 150.95, 140.86, 131.15, 126.45, 120.75, 119.87, 84.43, 55.11, 40.11, 31.66, 29.83, 29.09, 23.55, 22.48, 13.97. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{42}$: C, 90.35 ; H, 9.65. Found: C, 89.88; H, 9.88.

Scheme S6 Synthetic routes to 1,2-bis(4-azidophenyl)-1,2-diphenylethene 5a.

1,2-Bis(4-bromophenyl)-1,2-diphenylethene (19)

19 was prepared by the similar procedures to those of 14. White solid; yield 91.6\% (4.47 g). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.28-7.19 (m, 4H), 7.16-7.08 (m, 6H), 7.02-6.95 (m, 4H), 6.92-6.84 (m, 4H).

1,2-Bis(4-azidophenyl)-1,2-diphenylethene (5a)
5a was prepared by the similar procedures to those of $\mathbf{1}$. Slightly yellow solid; yield 90.0%. IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 3853,3731,3627,3028,1676,1597,1500,1442,1288$, $1180,1117,827,754,696,503 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.18$7.08(\mathrm{~m}, 6 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 8 \mathrm{H}), 6.83-6.74(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 143.22, 143.18, 140.34, 140.11, 138.09, 137.98, 132.66, 132.65, 131.18, 127.86, 127.75, 126.70, 126.62, 118.44, 118.28. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{6}$: C, 75.35; H, 4.38; N, 20.28. Found: C, 75.41; H, 4.52; N, 20.37.

Scheme S7 Synthetic routes to 1,2-bis(4-azidophenyl)ethane 5b.
1,2-Bis(4-bromophenyl)ethane (20)
20 was prepared by the similar procedures to those of 14 . White solid; yield 66.0%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.48 (d, 4H), 7.36 (d, 4H), 7.02 (s, 2H).

1,2-Bis(4-azidophenyl)ethane (5b)

$\mathbf{5 b}$ was prepared by the similar procedures to those of $\mathbf{1}$. Slightly yellow solid; yield 13.4%. IR (thin film), $v\left(\mathrm{~cm}^{-1}\right): 3735,3622,2121,1741,1599,1510,1294,1222,1117$, 966, 833, 773, 674, 536. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 7.48 (d, 4H), 7.10$6.95(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 139.1, 134.0, 127.7, 127.3, 119.26. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 64.11; H, 3.84; N, 32.04. Found: C, 63.91; H, 3.86; N, 31.85.

Scheme S8 Synthetic routes to 2-azido-9,9-dioctyl-9H-fluorene 23.
2-Azide-9,9-dioctyl-9H-fluorene (22)
22 was prepared by the similar procedures to those of $\mathbf{1 1}$. Yellow liquid; yield 73.8%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{TMS}, \mathrm{ppm}): 7.65-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.47$ (m, 2H), 7.32-7.34 (m, 3H), 1.91-1.97 (m, 4H), 1.05-1.31 (m, 16H), 0.81-0.85 (m, 6H), 0.52-0.70 (m, 4H).

2-Azide-9,9-dioctyl-9H-fluorene (23)

23 was prepared by the similar procedures to those of $\mathbf{1}$. Yellow solid; yield $63.4 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{TMS}, \mathrm{ppm}): 7.62-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.96-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 1.86-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.24(\mathrm{~m}, 20 \mathrm{H}), 0.80-0.84(\mathrm{t}, 6 \mathrm{H})$, $0.53-0.63(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 153.1, 150.6, 140.5, $138.9,138.6,127.2,127.1,123.0,120.9,119.6,117.9,113.8,55.5,40.6,32.0,30.2,29.4$, 23.9, 22.8, 14.3.

1,2-Bis(4-(1-(9,9-dioctyl-fluoren-2-yl)-1,2,3-triazol-4-yl)phenyl)-1,2-diphenylethene (M1)
Into a 25 mL Schlenk tube was placed 2a ($38.0 \mathrm{mg}, 0.1 \mathrm{mmol}$). After being evacuated and refilled with dry nitrogen three times, $\mathbf{2 3}(86.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ dissolved in THF (5
mL) was injected into the tube, followed by ethanol (5 mL) and water (5 mL). When the monomers were completely dissolved, freshly prepared aqueous solutions of sodium ascorbate ($1 \mathrm{M}, 1 \mathrm{~mL}, 7.5$ equivalent of $\mathbf{2 a}$) and $\mathrm{CuSO}_{4}(1 \mathrm{M}, 150 \mu \mathrm{~L}, 1.5$ equivalent of 2a) were added subsequently under vigorous stirring. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ under nitrogen for overnight. After cooled to room temperature, the crude product was extracted with DCM and water. The solvent was then removed with rotatory evaporator. The crude product was purified with silica gel chromatography. Yellow solid in 85.3% isolation yield was obtained. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{TMS}, \mathrm{ppm}): 8.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.74-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H})$ 7.13-7.16 (m, 2H), 7.08-7.12 (m, 4H), 1.97-2.04 (m, 8H), 0.99-1.22 (m, 40H), 0.76-0.82 $(\mathrm{t}, 12), 0.56-0.68(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 152.9, 151.2, $148.4,144.1,143.6,142.0,141.1,139.9,136.2,132.2,131.7,128.7,128.0,127.3,127.1$, $125.6,123.2,120.8,120.3,119.4,118.0,115.5,113.8,55.8,40.5,32.0,30.2,29.42,29.41$, 24.0, 22.8, 14.3.

1,2-bis(4-(1-(9,9-dioctyl-fluoren-2-yl)-1,2,3-triazol-4-yl)phenyl)ethene (M2)
The synthetic method to M2 is similar to that of M1. M2 was obtained as pale yellows solid in 76.7% isolation yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): $8.29(\mathrm{~m}, 2 \mathrm{H})$, $7.79(\mathrm{~d}, 4 \mathrm{H}), 7.83(\mathrm{~d}, 2 \mathrm{H}), 7.81(\mathrm{~d}, 2 \mathrm{H}), 7.72-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~d}, 4 \mathrm{H}) 7.35-7.40(\mathrm{~m}$, $6 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 2.00-2.07(\mathrm{~m}, 8 \mathrm{H}), 1.00-1.22(\mathrm{~m}, 40 \mathrm{H}), 0.80(\mathrm{t}, 12), 0.59-0.69(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (TMS, ppm): 152.9, 151.2, 148.3, 142.1, 139.9, 137.5, $136.2,129.8,128.7,128.0,127.33,127.29,126.4,123.2,120.8,120.3,119.5,118.0$, 115.5, 55.6, 40.6, 32.0, 30.2, 29.43, 29.41, 24.0, 22.8, 14.3.

Fig. S1 TGA thermograms of P3a, P3b, P6a and P6b recorded under nitrogen at a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$.

Fig. S2 IR spectra of monomers (A) $\mathbf{1}$ and (B) 2b and (C) their polymer P3b.

Fig. S3 IR spectra of (A) monomers 4 and (B) 5a and (C) their polymer P6a.

Fig. S4 IR spectra of (A) monomers 4 and (B) 5b and (C) their polymer P6b.

Fig. S5 ${ }^{1}$ H NMR spectra of (A) monomer 1, (B) monomer $\mathbf{2 b}$, (C) model compound M2 and (D) polymer P 3 b in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectra of (A) monomer 4, (B) monomer 5a, and (C) polymer P6a in CDCl_{3}. The solvent and water peaks are marked with asterisks.

ᄃ

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectra of (A) monomer $\mathbf{4}$, (B) monomer $\mathbf{5 b}$, and (C) polymer P6b in CDCl_{3}. The solvent and water peaks are marked with asterisks.

Fig. S8 UV absorption spectra M1 and M2 in THF solutions; concentration: $10 \mu \mathrm{M}$.

Fig. S9 Particle size analysis of the nano-aggregates of (A) P3a and (B) P3b in THF/water mixtures with water fraction of 90%. Concentration: $10 \mu \mathrm{M}$.

Fig. S10 (A) PL spectra of P3a in THF/methanol mixtures with different methanol fraction; excitation wavelength: 337; polymer concentration: $10 \mu \mathrm{M}$. (B) Plot of relative emission intensity versus methanol fraction in THF/methanol mixtures.

Fig. S11 (A) PL spectra of P3b in THF/methanol mixtures with different methanol fraction; excitation wavelength: 358; polymer concentration: $10 \mu \mathrm{M}$. (B) Plot of relative emission intensity versus methanol fraction in THF/methanol mixtures.

Fig. S12 Cyclic voltammograms of P3a and P6a in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.1 \mathrm{M}\left[{ }_{n} \mathrm{Bu} 4 \mathrm{~N}\right]+[\mathrm{PF} 6]$ at 100 mV / s.

Table S1 The HOMO and LUMO level, and energy gap values of theoretical estimation of P3a-M and P6a-M, and experimental measurement of P3a and P6a.

Polymers	Theorectical value (eV)			Experimental value (eV)		
	HOMO	LUMO	Energy gap	HOMO $^{\mathrm{a}}$	LUMO $^{\mathrm{b}}$	Energy gap
	-5.21	-1.78	3.43	-5.07	-2.06	3.01
P6a	-5.30	-1.83	3.47	-5.16	-2.16	3.00
a Determined from the onset of UV absorption spectra; ${ }^{\mathrm{b}}$ calculated from the sum of						
HOMO and energy gap value; ${ }^{\text {c }}$ determined from the peak of oxidation wave of the CV						
spectra, $\mathrm{E}_{\text {Hомо }}=-\mathrm{e}\left(\mathrm{E}^{\text {ox }}+4.4\right) . \mathrm{E}^{\text {ox }}$ of P3a and P6a are 0.672 V and 0.762 V , respectively.						

[^0]: ${ }^{a}$ MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China. Email: qinaj@zju.edu.cn; tangbenz@ust.hk
 ${ }^{b}$ Division of Biomedical Engineering, Department of Chemistry, Institute for Advanced Study, and Institute of Molecular Functional Materials, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong, China
 ${ }^{c}$ Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

