Supporting Information

Thermoresponsive poly(vinyl alcohol) derivatives: preparation, characterization and their capability of dispersing gold nanoparticles

Rui-Cong Wang,^a Hua-Ji Liu,^a Jin-Ge Tong^a and Yu Chen*^{ab}

^a Department of Chemistry, School of Sciences, Tianjin University, 300072 Tianjin, People's Republic of China

^b Collaborative Center of Chemical Science and Engineering (Tianjin), 300072 Tianjin, People's Republic of China.

Corresponding author, Tel.: +86-22-27405053; fax: +86-22-27403475

E-mail: chenyu@tju.edu.cn (Yu Chen)

Fig. S1 Typical XRD spectra of PVA, (A) PVA-GI, (B) PVA-AI and (C) PVA-VI

Fig. S2 Typical influence of temperature on the light transmittance of PVA in deionized water

Fig. S3 (A) DLS diagram and (B) TEM image of citrate-stabilized AuNPs

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Fig. S4 Typical UV-vis spectra of the redispersed AuNPs stabilized by different concentration of (A) PVA-AI_{14.1}, (B) PVA-AI_{11.2} and (C) PVA in deionized water (original concentration of Au atom is 3×10^{-4} mM)

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Fig. S5 Typical temperature dependent DLS of composites of AuNPs with $PVA-AI_{15.9}$ and $PVA-VI_{11.2}$ in deionized water (0.1 mg/mL)

Fig. S6 TEM images of AuNPs stabilized by (A) PVA-AI_{14.1} and (B) PVA-AI_{11.2}