Electronic Supplementary Information

Bio-based PBT copolyesters derived from D-glucose: influence of composition on properties

Cristina Japu,^a Antxon Martínez de Ilarduya,^a Abdelilah Alla,^a M^a Gracia García-Martín,^b Juan A. Galbis^b and Sebastián Muñoz-Guerra^{a*}

^aUniversitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain ^bUniversidad de Sevilla, Facultad de Farmacia, Francisco García González s/n, Sevilla, Spain

Corresponding author: sebastian.munoz@upc.edu

SI-Fig. 1. ¹H-¹H COSY NMR spectrum of PB₆₉Glux₃₁T copolyester.

SI-Fig. 2. ¹H-¹³C HETCOR NMR spectra of PB₆₉Glux₃₁T copolyester (top) amplified region and all (bottom).

SI-Fig. 3. ¹H (top) and ¹³C (bottom) NMR spectra of PB₆₉Glux₃₁T copolyester.

SI-Fig. 4. ¹H-¹H COSY NMR spectrum of PBT₆₇Glux₃₃ copolyester.

SI-Fig. 5. ¹H-¹³C HETCOR NMR spectra of PBT₆₇Glux₃₃ copolyester (top) all and (bottom) amplified region.

SI-Fig. 6. ¹H (top) and ¹³C (bottom) NMR spectra of PBT₆₇Glux₃₃ copolyester.

SI-Fig. 7. DSC traces of PB_xGlux_yT (a) and PBT_xGlux_y (b) copolyesters recorded at heating from quenched samples for T_g observation.

SI-Fig. 8. Double logarithmic plots of the isothermal crystallization of $PB_{97}Glux_3T$, $PB_{94}Glux_6T$, $PB_{89}Glux_{11}T$, $PBT_{95}Glux_5$, $PBT_{90}Glux_{10}$ copolyesters and PBT homopolyester at the indicated temperatures.

SI-Fig. 9. WAXS profiles of PB_xGlux_yT , PBT_xGlux_y copolymers and their parent homopolyesters recorded from powder samples without any previous thermal treatment.

SI-Fig. 10. Compared ¹H NMR after incubation (residue) with water at pH 2.0 at 80 $^{\circ}$ C and initial spectra of PB₅₉Glux₄₁T (a) and PBT₅₅Glux₄₅ (b) copolyesters.

SI-Fig. 11. ¹H NMR spectra in D_2O of the products released to the aqueous medium after incubation of PBT₅₅Glux₄₅ at pH 2.0 at 80 °C for four weeks.

SI-Table 1. Powder X-ray diffraction data of polyesters.

SI-Table 2. Mechanical properties.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2014

SI-Fig. 1. ¹H-¹H COSY NMR spectrum of PB₆₉Glux₃₁T copolyester.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2014

SI-Fig. 2. 1 H- 13 C HETCOR NMR spectrum of PB₆₉Glux₃₁T copolyester (bottom) and enlarged region (top).

SI-Fig. 3. ¹H (top) and ¹³C (bottom) NMR spectra of PB₆₉Glux₃₁T copolyester.

SI-Fig. 4. ¹H-¹H COSY NMR spectrum of PBT₆₇Glux₃₃ copolyester.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2014

SI-Fig. 5. ¹H-¹³C HETCOR NMR spectrum of $PBT_{67}Glux_{33}$ copolyester (top) and amplified region (bottom).

SI-Fig. 6. ¹H (top) and ¹³C (bottom) NMR spectra of PBT₆₇Glux₃₃ copolyester.

SI-Fig. 7. DSC traces of PB_xGlux_yT (a) and PBT_xGlux_y (b) copolyesters recorded at heating from quenched samples for T_g observation.

SI-Fig. 8. Double logarithmic plots of the isothermal crystallization of $PB_{97}Glux_3T$, $PB_{94}Glux_6T$, $PB_{89}Glux_{11}T$, $PBT_{95}Glux_5$, $PBT_{90}Glux_{10}$ copolyesters and PBT homopolyester at the indicated temperatures.

SI-Fig. 9. WAXS profiles of PB_xGlux_yT (top) PBT_xGlux_y (bottom) copolymers and their respective parent homopolyesters recorded from powder samples without any previous thermal treatment.

SI-Fig.10. Compared ¹H NMR spectra of $PB_{59}Glux_{41}T$ (a) and $PBT_{55}Glux_{45}$ (b) copolyesters before and after incubation (residue) in water at pH 2.0 at 80 °C.

SI-Fig.11. ¹H NMR spectra in D_2O of the products released to the aqueous medium by $PBT_{55}Glux_{45}$ after incubation in water at pH 2.0 at 80 °C for four weeks.

Polyester					<i>d</i> _{hkl} ^a	(Å)					$X_{\rm c}^{\rm b}$
PBT	5.50 s	5.13 s	4.45 w	4.29 s	3.95 m	3.81 s	3.69 w	3.52 s	3.04 w	2.84 m	0.70
$PBT_{95}Glux_5$	5.53 s	5.13 s	4.46 vw	4.29 s	3.95 m	3.82 s	3.69 w	3.52 s	3.04 w	2.84 m	0.66
$PBT_{90}Glux_{10}$	5.53 s	5.13 s	-	4.31 s	3.95 m	3.82 s	3.69 vw	3.52 s	3.04 w	2.85 m	0.60
$PB_{94}Glux_{6}T$	5.50 s	5.13 s	4.45 vw	4.31 s	3.95 m	3.82 s	3.69 w	3.52 s	3.04 w	2.85 m	0.63
PB ₈₉ Glux ₁₁ T	5.50 s	5.13 s	-	4.31 s	3.95 m	3.82 s	3.69 vw	3.52 s	3.04 w	2.85 m	0.49

SI-Table 1. F	Powder X-ray	diffraction	data of	pol	yesters
---------------	--------------	-------------	---------	-----	---------

^aBragg spacings measured in powder diffraction patterns obtained from annealed samples. Intensities visually estimated as follows: m, medium; s, strong; w, weak; vw, very weak. ^bCrystallinity index calculated as the quotient between crystalline area and total area. Crystalline and amorphous areas in the X-

^bCrystallinity index calculated as the quotient between crystalline area and total area. Crystalline and amorphous areas in the Xray diffraction pattern were quantified using PeakFit v4.12 software.

Polyester	Elastic modulus (MPa)	Tensile strength (MPa)	Elongation at break (%)
PBT	863±25	33±4	15±4
PB ₆₉ Glux ₃₁ T	885±17	41±5	79±9
$PB_{59}Glux_{41}T$	892±22	47±6	105±16
PBT ₆₇ Glux ₃₃	590±20	27±5	121±15
$PBT_{55}Glux_{45}$	582±15	24±5	131±18

SI-Table 2. Mechanical properties.