Chain transfer to solvent in the radical polymerization of structurally diverse acrylamide monomers using straight-chain and branched alcohols as solvents

Christopher Magee,^a Yusuke Sugihara,^b Per B. Zetterlund^{*b} and Fawaz Aldabbagh^{*a}

Supplementary Data

Figure S1. Conversion versus time for NMP of 2 M TBAM and MEA at 120 °C: Where (a) are polymerizations of TBAM initiated by poly(*t*-BA)-SG1, where [TBAM]₀/[poly(*t*-BA)-SG1]₀ = 300, and in the presence of 25 mol % free SG1 in 1-propanol (\Diamond), 1-hexanol (\Box) and 3-methyl-3-pentanol (\circ), and (b) polymerizations of MEA using the bimolecular system of [SG1]₀/[AIBN]₀ = 2.5 and [MEA]₀/[AIBN]₀ = 222 (\Diamond), 444 (Δ) in 1-propanol, and [MEA]₀/[AIBN]₀ = 444 in 1-hexanol (\Box), and poly(*t*-BA)-SG1-initiated system with 25 mol % free SG1 and [MEA]₀/[poly(*t*-BA)-SG1]₀ = 300 in 3-methyl-3-pentanol (\circ).

Figure S2. MWDs for poly(*t*-BA)-SG1-initiated NMP of 2M TBAM with 25 mol% excess free SG1and $[TBAM]_0/[poly(t-BA)-SG1]_0 = 300$ in (a) 1-propanol, (b) 1-hexanol and (c) 3-methyl-3-pentanol at 120 °C.

Figure S3. MWDs for NMP of 2 M MEA at 120 °C using $[SG1]_0/[AIBN]_0 = 2.5$ and (a) $[MEA]_0/[AIBN]_0 = 222$ in 1-propanol (b) $[MEA]_0/[AIBN]_0 = 444$ in 1-propanol (c) $[MEA]_0/[AIBN]_0 = 444$ in 1-hexanol.

Figure S4. MWDs for poly(*t*-BA)-SG1-initiated NMP of 2 M MEA with 25 mol% excess free SG1 and $[MEA]_0/[poly(t-Bu)-SG1]_0 = 300$ in 3-methyl-3-pentanol at 120 °C.

Figure S5. First-order plot of the spontaneous polymerization (in the absence of initiator or nitroxide) of 2 M MEA in 1-propanol at 120 °C