Supplementary Information for

Reneable polyesters derived from 10-undecenoic acid and vanillic acid with versatile properties

Chengcai Pang,^a Jie Zhang,^a Guolin Wu,^{a*} Yinong Wang,^a Hui Gao,^b Jianbiao Ma^{b*}

^aKey Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, PR China

^bSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, PR China

Corresponding author: guolinwu@nankai.edu.cn; Fax: +86 22 23502749; Tel: +86 22 23507746

Figure S1. Stacked ¹H NMR spectra of M1-4

Figure S2. Stacked ¹H NMR spectra of M5 and M6

Figure S3. ¹³C NMR spectra of M1

Figure S4. ¹³C NMR spectra of M2

Figure S7. ¹³C NMR spectra of M5

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is C The Royal Society of Chemistry 2014

Figure S11. FTIR of spectra of PE1, PE3, PE4, PE7

Figure S12. TGA curves of PE2, PE3 and PE5 at a heating rate of 10 °C min⁻¹

Figure S13. SEC traces of selected synthesized PE1and PE4

Figure S14. Detailed structures of PEs 1-7.