Supplementary Information

Supramolecular X- and H-Shape Star Block Copolymers via Cyclodextrin-Driven Supramolecular Self-Assembly

Bernhard V. K. J. Schmidt and Christopher Barner-Kowollik*

Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

*(C.B.-K.) Tel (+49) 721 608-45642; Fax (+49) 721 608-45740; e-mail: christopher.barner-

kowollik@kit.edu

CTA1

CTA2

CTA3

Scheme S1. Structures of CTA1 and CTA2 and synthesis of CTA3.

Scheme S2. Schematic overview of the utilized polymers and investigated supramolecular star polymers (PDMA: red, PDEA: black, adamantyl: blue sphere, CD: orange truncated cone).

Synthesis of Double Adamantyl Endfunctionalized PDMA (*Ad*₂-*PDMA*₅₇)

CTA1 (112.0 mg, 0.15 mmol, 1.0 eq.), DMA (500.0 mg, 5.05 mmol, 33.7 eq.), AIBN (4.7 mg, 0.03 mmol, 0.2 eq.), DMF (3.4 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 24 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. A NMR-sample was withdrawn for the determination of conversion and CDCl₃ was added. A quantitative conversion was calculated based on the NMR data (see Characterization Methods for details of the calculation). The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield Ad₂-PDMA₅₇ as a yellow solid (0.41 g, 67%, $M_{n,theo} = 4100 \text{ g} \cdot \text{mol}^{-1}$, $M_{n,NMR} = 5400 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 6400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.06).

Synthesis of Double Adamantyl Endfunctionalized PDEA (Ad₂-PDEA₅₁)

CTA1 (54.0 mg, 0.07 mmol, 1.0 eq.), DEA (500.0 mg, 3.94 mmol, 55.6 eq.), AIBN (2.4 mg, 0.02 mmol, 0.2 eq.), DMF (3.3 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 24 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. A NMR-sample was withdrawn for the determination of conversion and CDCl₃ was added. A quantitative conversion was calculated based on the NMR data (see Characterization Methods for details of the calculation). The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield Ad₂-PDEA₅₁ as a yellow solid (0.45 g, 76%, $M_{n,theo} = 7800 \text{ g} \cdot \text{mol}^{-1}$, $M_{n,NMR} = 7300 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 6800 \text{ g} \cdot \text{mol}^{-1}$, D = 1.11).

*Synthesis of Mid-Chain Adamantyl-Functionalized PDMA (m-Ad-PDMA*₁₁₄)

CTA2 (160.0 mg, 0.20 mmol, 1.0 eq.), DMA (2.00 g, 20.18 mmol, 100.9 eq.), AIBN (6.6 mg, 0.04 mmol, 0.2 eq.), DMF (18.0 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 6 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. A NMR-sample was withdrawn for the determination of conversion and CDCl₃ was added. A conversion of 88% was calculated based on the NMR data (see Characterization Methods for details of the calculation). The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-Ad-PDMA₁₁₄ as a yellow solid (0.74 g, 42%, $M_{n,theo} = 9600$ g·mol⁻¹, $M_{n,NMR} = 12100$ g·mol⁻¹, SEC(DMAc): $M_{n,SEC} = 12000$ g·mol⁻¹, D = 1.10).

Synthesis of Mid-Chain Adamantyl-Functionalized PDEA (m-Ad-PDEA₄₇)

CTA2 (250.0 mg, 0.32 mmol, 1.0 eq.), DEA (2.00 g, 15.75 mmol, 49.2 eq.), AIBN (10.3 mg, 0.06 mmol, 0.2 eq.), DMF (20.0 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 6 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. A NMR-sample was withdrawn for the determination of conversion and CDCl₃ was added. A conversion of 91% was calculated based on the NMR data (see Characterization Methods for details of the calculation). The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-Ad-PDEA₄₇ as a yellow solid (1.59 g, 87%, $M_{n,theo} = 6500 \text{ g} \cdot \text{mol}^{-1}$, $M_{n,NMR} = 6800 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 5400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.08).

Synthesis of Mid-Chain Adamantyl-Functionalized P(DEA-b-DMA) (m-Ad-P(DEA₄₇-b-DMA₃₃))

Mid-chain adamantyl-functionalized PDEA (m-Ad-PDEA₄₇; $M_{n,NMR} = 6800 \text{ g} \cdot \text{mol}^{-1}$; 800.0 mg, 0.12 mmol, 1.0 eq.), DMA (816.0 mg, 8.24 mmol, 68.7 eq.), AIBN (3.9 mg, 0.02 mmol, 0.2 eq.), DMF (10.6 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 6 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-Ad-P(DEA₄₇-*b*-DMA₃₃) as a yellow solid (1.32 g, 82%, $M_{n,NMR} = 10800 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 10400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.13).

Synthesis of Mid-Chain Alkyne-Functionalized PDEA (m-alk-PDMA₉₀)

CTA3 (82.0 mg, 0.14 mmol, 1.0 eq.), DEA (2.80 g, 22.05 mmol, 157.5 eq.), AIBN (5.0 mg, 0.03 mmol, 0.2 eq.), DMF (7.0 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 1.5 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-alk-PDMA₉₀ as a yellow solid (2.17 g, $M_{n,NMR} = 12000 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 12400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.15).

Synthesis of Mid-Chain Alkyne-Functionalized PDEA (m-alk-PDMA₃₉)

CTA3 (230.0 mg, 0.42 mmol, 1.0 eq.), DEA (2.00 g, 15.75 mmol, 37.5 eq.), AIBN (13.0 mg, 0.08 mmol, 0.2 eq.), DMF (10.0 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 3 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. A NMR-

sample was withdrawn for the determination of conversion and CDCl₃ was added. A conversion of 63% was calculated based on the NMR data (see Characterization Methods for details of the calculation). The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-alk-PDMA₃₉ as a yellow solid (1.09 g, 55%, $M_{n,theo} = 3600 \text{ g} \cdot \text{mol}^{-1}$, $M_{n,NMR} = 5500 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 3900 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10).

Synthesis of Mid-Chain Alkyne-Functionalized P(DEA-b-DMA) (m-alk-P(DEA₃₉-b-DMA₃₇))

Mid-chain alkyne-functionalized PDEA₃₉ (m-alk-PDMA₃₉; $M_{n,NMR} = 5500 \text{ g} \cdot \text{mol}^{-1}$; 800.0 mg, 0.15 mmol, 1.0 eq.), DMA (1.10 g, 11.10 mmol, 76.3 eq.), AIBN (8.0 mg, 0.05 mmol, 0.3 eq.), DMF (6.4 mL) and a stirring-bar were added into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was backfilled with argon, sealed, placed in an oil bath at 60 °C and removed after 3 h. The tube was subsequently cooled with liquid nitrogen to stop the reaction. The residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 1000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield m-alk-P(DEA39-*b*-DMA37) as a yellow solid (1.33 g, 70%, $M_{n,NMR} = 12500 \text{ g} \cdot \text{mol}^{-1}$, SEC(DMAc): $M_{n,SEC} = 9200 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10).

ω-Endgroup Removal of Mid-Chain Alkyne-Functionalized m-alk-PDEA₉₀-OH

AIBN (0.55 g, 3.35 mmol, 41.9 eq.) was dissolved in unstabilized THF (80 mL) and heated to 60 °C under vigorous stirring. After 30 min a peroxide test confirmed successful peroxide formation and midchain alkyne-functionalized PDEA (m-alk-PDEA₉₀; $M_{n,NMR} = 12000 \text{ g} \cdot \text{mol}^{-1}$, 1.00 g, 0.08 mmol, 1.0 eq.) was added. The mixture was stirred at 60 °C until the yellow color vanished. L-(+)-Ascorbic acid (176.0 mg, 0.88 mmol, 11.1 eq.) was added and the mixture stirred at 60 °C for 30 min. Subsequently the mixture was cooled to ambient temperature and the solvent evaporated. The residue was dissolved in a mixture of THF and deionized H_2O , dialyzed against deionized H_2O for 3 days, filtered and lyophilized to yield m-alk-PDEA₉₀-OH as off-white solid (0.86 g, 86%).

ω-Endgroup Removal of Mid-Chain Alkyne-Functionalized P(DEA₃₉-b-DMA₃₇)-OH

AIBN (0.32 g, 1.95 mmol, 39.0 eq.) was dissolved in unstabilized THF (50 mL) and heated to 60 °C under vigorous stirring. After 30 min a peroxide test confirmed successful peroxide formation and midchain alkyne-functionalized P(DEA-*b*-DMA) (m-alk-P(DEA₃₉-*b*-DMA₃₇); $M_{n,NMR} = 12500 \text{ g} \cdot \text{mol}^{-1}$, 0.60 g, 0.05 mmol, 1.0 eq.) was added. The mixture was stirred at 60 °C until the yellow color vanished. L-(+)-Ascorbic acid (100.0 mg, 0.51 mmol, 10.1 eq.) was added and the mixture stirred at 60 °C for 30 min. Subsequently the mixture was cooled to ambient temperature and the solvent evaporated. The residue was dissolved in a mixture of THF and deionized H₂O, dialyzed against deionized H₂O for 3 days, filtered and lyophilized to yield P(DEA₃₉-*b*-DMA₃₇)-OH as off-white solid (0.30 g, 51%).

Click-Reaction of Mid-Chain Alkyne-Functionalized PDEA with β -CD-N₃ (m- β -CD-PDEA₉₀)

Mid-chain alkyne functionalized PDEA₉₀ (m-alk-PDEA₉₀-OH; $M_{n,NMR} = 12000 \text{ g} \cdot \text{mol}^{-1}$; 600.0 mg, 0.05 mmol, 1.0 eq.), β -CD-N₃ (594.0 mg, 0.51 mmol 10.3 eq.) PMDETA (157 µL, 0.75 mmol, 15.0 eq.), DMF (28.0 mL) and a stirring-bar were introduced into a Schlenk-tube. After three freezepump-thaw cycles the tube was filled with argon and CuBr (94.0 mg, 0.66 mmol, 13.1 eq.) was added under a stream of argon. Subsequently two freeze-pump-thaw cycles were performed, the tube backfilled with argon and the mixtures stirred at ambient temperature for 48 h. EDTA-solution (5 wt.%, 2 mL) was added and the residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 2000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield the cyclodextrin functionalized polymer m- β -CD-PDEA₉₀ as off-white solid (571.0 mg, 86%, SEC(DMAc): $M_{n,SEC} = 11100 \text{ g} \cdot \text{mol}^{-1}, D = 1.30$).

Click-Reaction of Mid-Chain Alkyne-Functionalized P(DEA-b-DMA) with β -CD-N₃ (m- β -CD-P(DEA₃₉-b-DMA₃₇))

Mid-chain alkyne functionalized P(DEA-*b*-DMA) (m-alk-P(DEA₃₉-*b*-DMA₃₇)-OH; $M_{n,NMR} = 12500 \text{ g} \cdot \text{mol}^{-1}$; 200.0 mg, 0.02 mmol, 1.0 eq.), β-CD-N₃ (190.0 mg, 0.16 mmol 8.0 eq.), PMDETA (50 µL, 0.24 mmol, 12.0 eq.), DMF (9.0 mL) and a stirring-bar were introduced into a Schlenk-tube. After three freeze-pump-thaw cycles the tube was filled with argon and CuBr (30.0 mg, 0.21 mmol, 10.5 eq.) was added under a stream of argon. Subsequently two freeze-pump-thaw cycles were performed, the tube backfilled with argon and the mixtures stirred at ambient temperature for 48 h. EDTA-solution (5 wt. %, 1 mL) was added and the residue was dialysed against deionized water with a SpectraPor3 membrane (MWCO = 2000 Da) for 3 days at ambient temperature. The solvent was removed in vacuo to yield the cyclodextrin functionalized polymer m-β-CD-P(DEA₃₉-*b*-DMA₃₇) as offwhite solid (210.0 mg, 77%, SEC(DMAc): $M_{n,SEC} = 7600 \text{ g} \cdot \text{mol}^{-1}$, D = 1.26).

Figure S1. ¹H-NMR spectrum of prop-2-yn-1-yl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate recorded in CDCl₃ at 400 MHz.

Figure S2. ¹³C-NMR spectrum of prop-2-yn-1-yl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate recorded in CDCl₃ at 100 MHz.

Figure S3. ¹H-NMR spectrum of prop-2-yn-1-yl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate recorded in CDCl₃ at 400 MHz.

Figure S4. ¹³C-NMR spectrum of prop-2-yn-1-yl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate recorded in CDCl₃ at 100 MHz.

Figure S5. ¹H-NMR spectrum of 2-methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoate) (**CTA3**) recorded in CDCl₃ at 400 MHz.

Figure S6. ¹³C-NMR spectrum of 2-methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoate) (**CTA3**) recorded in CDCl₃ at 100 MHz.

DMA/CTA/I	t	Conv.	<i>M</i> _{n,theo}	$M_{\rm n,NMR}$	M _{n,SEC}	Đ	Dp	label
	/ h	/ %	$/ g \cdot mol^{-1}$	$/ g \cdot mol^{-1}$	$/ g \cdot mol^{-1}$			
CTA1 34/1/0.2	24	> 99	4100	5400	6400	1.06	57	Ad ₂ -PDMA ₅₇
CTA2 101/1/0.2	6	88	9600	12100	12000	1.10	114	m-Ad-PDMA ₁₁₄
CTA3 203/1/0.2	1	-	-	10900	10600	1.10	104	m-alk-PDMA ₁₀₄

Table S1. Results for the RAFT polymerization of DMA at 60 °C in DMF.

Table S2. Results for the RAFT polymerization of DEA at 60 °C in DMF.

DEA/CTA/I	t	Conv.	<i>M</i> _{n,theo}	M _{n,NMR}	M _{n,SEC}	Đ	Dp	label
	/ h	/ %	$/ g \cdot mol^{-1}$	$/ g \cdot mol^{-1}$	$/ g \cdot mol^{-1}$			
CTA1 56/1/0.2	24	> 99	7800	7300	6800	1.11	51	Ad ₂ -PDEA ₅₁
CTA2 49/1/0.2	6	91	6500	6800	5400	1.08	47	m-Ad-PDEA47
CTA3 158/1/0.2	1.5	-	-	12000	12400	1.15	90	m-alk-PDEA ₉₀
CTA3 38/1/0.2	3	63	3600	5500	3900	1.10	39	m-alk-PDEA ₃₉

Table S3. Results for the RAFT block copolymerization of DMA at 60 °C in DMF.

DMA/CTA/I	t	M _{n,NMR}	M _{n,SEC}	Ð	Dp	label
	/ h	$/ g \cdot mol^{-1}$	$/ g \cdot mol^{-1}$			
m-Ad-PDEA ₄₇ 56/1/0.2	6	10800	10400	1.13	47+33	m-Ad-P(DEA ₄₇ - <i>b</i> -DMA ₃₃)
m-alk-PDEA₃₉ 38/1/0.2	3	12500	9300	1.10	39+37	m-alk-P(DEA ₃₉ -b-DMA ₃₇)

Figure S7. SEC traces of Ad₂-PDMA₅₇ (black, $M_{n,SEC} = 6400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.06), m-Ad-PDMA₁₁₄ (red, $M_{n,SEC} = 12000 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10), m-alk-PDMA₁₀₄ (blue, $M_{n,SEC} = 10600 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10) and short chain m-alk-PDMA (green, $M_{n,SEC} = 2000 \text{ g} \cdot \text{mol}^{-1}$, D = 1.11) for ESI-MS measured in DMAc.

Figure S8. SEC traces of Ad₂-PDEA₅₁ (black, $M_{n,SEC} = 6800 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.11$), m-Ad-PDEA₄₇ (red, $M_{n,SEC} = 5400 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.08$), m-alk-PDEA₉₀ (blue, $M_{n,SEC} = 12400 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.15$), m-alk-PDEA₃₉ (green, $M_{n,SEC} = 3900 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.10$) and short chain m-alk-PDEA for ESI-MS (green, $M_{n,SEC} = 1800 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.08$) measured in DMAc.

Figure S9. SEC traces of the block copolymers and their respective macro-CTAs: m-Ad-PDEA₄₇ (black, $M_{n,SEC} = 5400 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.08$), m-Ad-P(DEA₄₇-*b*-DMA₃₃) (black dashed, $M_{n,SEC} = 10400 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.13$), m-alk-PDEA₃₉ (red, $M_{n,SEC} = 3900 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.10$) and m-alk-P(DEA₃₉-*b*-DMA₃₇) (red dashed, $M_{n,SEC} = 9300 \text{ g} \cdot \text{mol}^{-1}$, $\mathcal{D} = 1.10$) measured in DMAc.

Figure S10. ESI-MS-spectrum of a mid-chain alkyne-functionalized PDMA ($M_{n,SEC} = 2000 \text{ g} \cdot \text{mol}^{-1}$, D = 1.11) polymerized with **CTA3**.

Table S4. Theoretical and experimental m/z of PDMA polymerized with **CTA3**.

Species	$m/z_{\rm theo}$	$m/z_{\rm exp.}$	$\Delta m/z$
$\blacksquare \left[\mathbf{CTA3}(\mathbf{DMA})_9 + \mathbf{H} \right]^+$	1476.68	1476.50	0.18
• [CTA3 (DMA) ₂₃ +Na] ⁺	1498.66	1498.75	0.09
$\circ \left[\mathbf{CTA3}(\mathbf{DMA})_{25} + 2\mathbf{H} \right]^{2+}$	887.44	887.42	0.02

Figure S11. ESI-MS-spectrum of a mid-chain alkyne-functionalized PDEA ($M_{n,SEC} = 1800 \text{ g} \cdot \text{mol}^{-1}$, D = 1.08) polymerized with **CTA3**.

Table S5. Theoretical and experimental m/z of PDEA polymerized with **CTA3**.

Species	$m/z_{\rm theo}$	$m/z_{\rm exp.}$	$\Delta m/z$
$\blacksquare \left[\mathbf{CTA3}(\mathrm{DEA})_8 + \mathrm{H} \right]^+$	1601.86	1602.09	0.23
• [CTA3(DEA) ₈ +Na] ⁺	1623.84	1624.09	0.25
$\circ \left[\mathbf{CTA3}(\mathrm{DEA})_{10}+2\mathrm{H}\right]^{2+}$	928.53	929.09	0.56

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is o The Royal Society of Chemistry 2013

Figure S12. ¹H-NMR spectrum of double adamantyl-functionalized Ad₂-PDMA₅₇ ($M_{n,SEC}$ = 6400 g·mol⁻¹, D = 1.06) recorded in CDCl₃ at 25 °C.

Figure S13. ¹H-NMR spectrum of mid-chain adamantyl-functionalized m-Ad-PDMA₁₁₄ $(M_{n,SEC} = 12100 \text{ g} \cdot \text{mol}^{-1}, D = 1.10)$ recorded in CDCl₃ at 25 °C.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is The Royal Society of Chemistry 2013

Figure S14. ¹H-NMR spectrum of double adamantyl-functionalized Ad₂-PDEA₅₁ ($M_{n,SEC}$ =6800 g·mol⁻¹, D = 1.11) recorded in CDCl₃ at 25 °C.

Figure S15. ¹H-NMR spectrum of mid-chain adamantyl-functionalized m-Ad-PDEA₄₇ ($M_{n,SEC} = 5400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.08) recorded in CDCl₃ at 25 °C.

Figure S16. ¹H-NMR spectrum of mid-chain adamantyl-functionalized m-Ad-P(DEA₄₇-*b*-DMA₃₃) $(M_{n,SEC} = 10400 \text{ g} \cdot \text{mol}^{-1}, D = 1.13)$ recorded in CDCl₃ at 25 °C.

Figure S17. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-PDMA₁₀₄ ($M_{n,SEC} = 10600 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10) recorded in CDCl₃ at 25 °C.

Figure S18. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-PDEA₉₀ ($M_{n,SEC} = 12400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.15) recorded in CDCl₃ at 25 °C.

Figure S19. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-P(DEA₃₉-*b*-DMA₃₇) $(M_{n,SEC} = 9300 \text{ g} \cdot \text{mol}^{-1}, D = 1.10)$ recorded in CDCl₃ at 25 °C.

Figure S20. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-PDMA₁₀₄-OH after RAFT endgroup removal ($M_{n,SEC} = 10600 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10) recorded in DMSO-d₆ at 25 °C.

Figure S21. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-PDEA₉₀-OH after RAFT endgroup removal ($M_{n,SEC} = 12400 \text{ g} \cdot \text{mol}^{-1}$, D = 1.15) recorded in DMSO-d₆ at 25 °C.

Figure S22. ¹H-NMR spectrum of mid-chain alkyne-functionalized m-alk-P(DEA₃₉-*b*-DMA₃₇)-OH after RAFT endgroup removal ($M_{n,SEC} = 10200 \text{ g} \cdot \text{mol}^{-1}$, D = 1.26) recorded in DMSO-d₆ at 25 °C.

Figure S23. ¹H-NMR spectrum of mid-chain β -CD-functionalized m- β -CD-PDMA₁₀₄ ($M_{n,SEC} = 10600 \text{ g} \cdot \text{mol}^{-1}$, D = 1.10) recorded in DMSO-d₆ at 25 °C.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is o The Royal Society of Chemistry 2013

Figure S24. ¹H-NMR spectrum of mid-chain β -CD-functionalized m- β -CD-PDEA₉₀ ($M_{n,SEC} = 11200 \text{ g} \cdot \text{mol}^{-1}$, D = 1.30) recorded in DMSO-d₆ at 25 °C.

Figure S25. ¹H-NMR spectrum of mid-chain β -CD-functionalized m- β -CD-P(DEA₃₉-*b*-DMA₃₇) ($M_{n,SEC} = 7600 \text{ g} \cdot \text{mol}^{-1}, D = 1.26$) recorded in DMSO-d₆ at 25 °C.

Figure S26. a) SEC Traces of mid-chain alkyne functionalized m-alk-P(DEA₃₉-*b*-DMA₃₇)-OH (straight line) after RAFT endgroup removal and mid-chain β -CD functionalized m- β -CD-P(DEA₃₉-*b*-DMA₃₇) (dashed line), magnifications of ¹H NMR spectra of b) β -CD-N₃, c) m- β -CD-P(DEA₃₉-*b*-DMA₃₇), d) mid-chain alkyne functionalized m-alk-P(DEA₃₉-*b*-DMA₃₇)-OH after RAFT endgroup removal and e) mid-chain alkyne functionalized m-alk-P(DEA₃₉-*b*-DMA₃₇).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is o The Royal Society of Chemistry 2013

Figure S27. a) SEC Traces of mid-chain alkyne functionalized m-alk-PDEA₉₀-OH (straight line) after RAFT endgroup removal and mid-chain β -CD functionalized m- β -CD-PDEA₉₀ (dashed line), magnifications of ¹H NMR spectra of b) β -CD-N₃, c) m- β -CD-PDEA₉₀, d) mid-chain alkyne functionalized m-alk-PDEA₉₀-OH after RAFT endgroup removal and e) mid-chain alkyne functionalized m-alk-PDEA₉₀.

Table S6. Hydrodynamic diameters, D_h , (from the number weighted distributions) of the uncomplexed polymers and the supramolecular complexes in Milli-Q water at a concentration of 1 mg·mL⁻¹ at 10 °C.

Sample	D _h [nm]	Std. Dev. [nm]
Ad ₂ -PDMA ₅₇	18.4	2.5 (12.8%)
Ad ₂ -PDEA ₅₁	48.7	7.6 (15.5%)
m-Ad-PDMA ₁₁₄	6.6	1.0 (15.3%)
m-Ad-PDEA ₄₇	only slightly soluble	-
m-Ad-P(DEA ₄₇ - b -DMA ₃₃)	19.6	2.6 (13.1%)
m - β - CD - $PDMA_{104}$	2.4	0.2 (9.8%)
m-β-CD-PDEA ₉₀	75.6	9.8 (12.9%)
m-β-CD-P(DEA ₃₉ - <i>b</i> -DMA ₃₇)	24.7	3.6 (14.7%)
X-Shape		
m-Ad-PDMA ₁₁₄ -m-β-CD-PDEA ₉₀	104.5	12.7 (12.1%)
m - β - CD - $PDMA_{104}$ - m - Ad - $PDEA_{47}$	10.5	1.5 (14.5%)
m-β-CD-P(DEA ₃₉ -b-DMA ₃₇)-m-Ad-P(DEA ₄₇ -b-DMA ₃₃)	12.5	1.7 (13.4%)
m - β - CD - $PDEA_{90}$ - m - Ad - $PDEA_{47}$	21.9	3.0 (13.9%)
m - β - CD - $PDMA_{104}$ - m - Ad - $PDMA_{114}$	7.3	0.7 (9.1%)

Sample	D _h [nm]	Std. Dev. [nm]
H-shape		
Ad_2 -PDMA ₅₇ -(m- β -CD-PDEA ₉₀) ₂	5.3	0.8 (15.3%)
$Ad_2\text{-PDEA}_{51}\text{-}(m\text{-}\beta\text{-}CD\text{-}PDMA_{104})_2$	4.0	0.4 (11.3%)
Ad ₂ -PDEA ₅₁ -(m- β -CD-P(DEA ₃₉ - <i>b</i> -DMA ₃₇)) ₂	12.2	1.6 (12.8%)
$(m-\beta-CD-PDEA_{90})_2-Ad_2-PDEA_{51}$	9.7	1.2 (12.8%)
$(m-\beta-CD-PDMA_{104})_2-Ad_2-PDMA_{57}$	51.9	6.8 (13.1%)

Figure S28. DLS measurements of adamantyl functionalized building blocks (dotted line), CD functionalized building blocks (dashed line) and the supramolecular complex (straight line) at 10 °C and a concentration of 1 mg·mL⁻¹ in H₂O: a) X-shape m-β-CD-P(DEA₃₉-*b*-DMA₃₇), m-Ad-P(DEA₄₇-*b*-DMA₃₃) and m-β-CD-P(DEA₃₉-*b*-DMA₃₇)-m-Ad-P(DEA₄₇-*b*-DMA₃₃), b) X-shape m-β-CD-PDEA₉₀ and m-Ad-PDEA₄₇-m-β-CD-PDEA₉₀ (Note: the block m-Ad-PDEA₄₇ is only slightly soluble at 10 °C in H₂O), c) X-shape m-Ad-PDMA₁₁₄, m-β-CD-PDMA₁₀₄ and m-Ad-PDMA₁₁₄-m-β-CD-PDMA₁₀₄, d) H-shape Ad₂-PDEA₅₁, m-β-CD-P(DEA₃₉-*b*-DMA₃₇) and Ad₂-PDEA₅₁-(m-β-CD-P(DEA₃₉-*b*-DMA₃₇))₂, e) H-shape Ad₂-PDEA₅₁, m-β-CD-PDEA₉₀ and Ad₂-PDEA₅₁-(m-β-CD-PDEA₉₀)₂ and f) H-shape Ad₂-PDMA₅₇, m-β-CD-PDMA₁₀₄ and Ad₂-PDMA₅₇-(m-β-CD-PDMA₁₀₄)₂.

Figure S29. NOESY measurement of X-shape m-β-CD-PDEA₉₀-m-Ad-PDMA₁₁₄ in D₂O at 25 °C.

Figure S30. NOESY measurement of X-shape m- β -CD-P(DEA₃₉-b-DMA₃₇)-m-Ad-P(DEA₄₇-b-DMA₃₃) in D₂O at 25 °C.

Figure S31. NOESY measurement of X-shape m-β-CD-PDEA₉₀-m-Ad-PDEA₄₇ in D₂O at 25 °C.

Figure S32. NOESY measurement of X-shape m-β-CD-PDMA₁₀₄-m-Ad-PDMA₁₁₄ in D₂O at 25 °C.

Figure S33. NOESY measurement of H-shape Ad₂-PDMA₅₇-(m-β-CD-PDEA₉₀)₂ in D₂O at 25 °C.

Figure S34. NOESY measurement of H-shape Ad₂-PDEA₅₁-(m-β-CD-P(DEA₃₉-b-DMA₃₇))₂ in D₂O at

25 °C.

Figure S35. NOESY measurement of H-shape Ad₂-PDEA₅₁-(m-β-CD-PDEA₉₀)₂ in D₂O at 25 °C.

Figure S36. NOESY measurement of H-shape Ad₂-PDMA₅₇-(m-β-CD-PDMA₁₀₄)₂ in D₂O at 25 °C.

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Figure S37. Temperature responsive behavior of X-shape star block copolymers at a concentration of 1 mg·mL⁻¹ in H₂O: a) temperature sequenced DLS measurement of m- β -CD-P(DEA₃₉-*b*-DMA₃₇)-m-Ad-P(DEA₄₇-*b*-DMA₃₃), b) temperature sequenced DLS measurement of m- β -CD-PDEA₉₀-m-Ad-PDEA₄₇ and c) turbidimetric measurements of m- β -CD-PDEA (dotted line), m-Ad-PDEA₄₇ (dashed line) and m- β -CD-PDEA₉₀-m-Ad-PDEA₄₇ (straight line).

Electronic Supplementary Material (ESI) for Polymer Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Figure S38. Temperature responsive behavior of H-shape star block copolymers at a concentration of 1 $mg \cdot mL^{-1}$ in H₂O: a) temperature sequenced DLS measurement of Ad₂-PDEA₅₁-(m- β -CD-P(DEA₃₉-*b*-DMA₃₇))₂, b) temperature sequenced DLS measurement of Ad₂-PDEA₅₁-(m- β -CD-PDEA₉₀)₂, c) turbidimetric measurements of Ad₂-PDEA₅₁ (dashed line) and Ad₂-PDEA₅₁-(m- β -CD-P(DEA₃₉-*b*-DMA₃₇))₂ (straight line) (Note: m- β -CD-P(DEA₃₉-*b*-DMA₃₇) shows no cloud point) and d) turbidimetric measurements of m- β -CD-PDEA₉₀ (dotted line), Ad₂-PDEA₅₁ (dashed line) and Ad₂-PDEA₅₁-(m- β -CD-PDEA₉₀)₂ (straight line).

Table S7. Cloudpoints (T_c s) of the utilized building blocks and supramolecular star polymers at a concentration of 1 mg·mL⁻¹ and a heating rate of 0.32 °C·min⁻¹.

Sample	$T_{\rm c} [^{\circ}{\rm C}]$
Ad ₂ -PDEA ₅₁	24.3
m-Ad-PDEA ₄₇	12.8
m-Ad-P(DEA ₄₇ - b -DMA ₃₃)	no turbidity
m-β-CD-PDEA ₉₀	37.4
m-β-CD-P(DEA ₃₉ -b-DMA ₃₇)	no turbidity
X-Shape	
m-Ad-PDMA ₁₁₄ -m-β-CD-PDEA ₉₀	40.5
m - β - CD - $PDMA_{104}$ - m - Ad - $PDEA_{47}$	19.0
$m-\beta-CD-P(DEA_{39}-b-DMA_{37})-m-Ad-P(DEA_{47}-b-DMA_{33})$	no turbidity
m-β-CD-PDEA ₉₀ -m-Ad-PDEA ₄₇	20.6
H-shape	
Ad_2 -PDMA ₅₇ -(m- β -CD-PDEA ₉₀) ₂	38.9
Ad_2 -PDEA ₅₁ -(m- β -CD-PDMA ₁₀₄) ₂	36.0
Ad_2 -PDEA ₅₁ -(m- β -CD-P(DEA ₃₉ - <i>b</i> -DMA ₃₇)) ₂	slow increase in turbidity
$(m-\beta-CD-PDEA_{90})_2-Ad_2-PDEA_{51}$	37.2