Supporting Information

Functional Highly Branched Polymers from Multicomponent Polymerization (MCP) Based on the ABC Type Passerini Reaction

Xin-Xing Deng, Yang Cui, Fu-Sheng Du and Zi-Chen Li*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry \& Physics of Ministry of Education, Department of Polymer Science \& Engineering, College of Chemistry \& Molecular Engineering, Peking University, Beijing 100871, China
E-mail: zcli@pku.edu.cn; Tel: +86-10-6275-5543; Fax: +86-10-6275-1708.

Experiment Section

Materials

Silica gel (200-300 mesh, Yantai Chem. Res. Inst.), sodium periodate ($\mathrm{NaIO}_{4}, \mathrm{AR}, \mathrm{Xi}$
Long Chem. Co.), trans-cyclohexane-1,2-diol (Alfa Aesar, >98\%), 1, 6-diisocyanohexane (Aldrich, >98\%), hexanedioic acid (Sinopharm Chem. Reagent, >99.5\%), 10-undecynoic acid (Alfa Aesar, >96\%), 10-undecenoic acid (Alfa Aesar, >99\%), phenylacetaldehyde (Alfa aesar, >95\%) and methyl isocyanoacetate(Alfa aesar, >95\%) were used as received. All the solvents were purchased from commercial sources and further purified by conventional methods.

Measurements

The number-average molecular weight (Mn) and polydispersity index (PDI) of polymers were determined by gel permeation chromatography (GPC) equipped with a 2414 refractive index detector, a Waters 1525 binary HPLC pump, and three Waters Styragel HT columns (HT2, HT3, HT4). The columns were thermostated at $35^{\circ} \mathrm{C}$, and THF was used as an eluent at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. Calibration was made against standard linear polystyrene
(PSt), the obtained datum was processed on professional software.
${ }^{1} \mathrm{H}$ NMR (400 or 300 MHz) spectra were recorded in CDCl_{3} on a Bruker ARX-400 spectrometer or a Varian Gemini 300 spectrometer with tetramethylsilane (TMS) as the internal reference for chemical shifts.

Synthesis of Hexane-1, 6-dial ${ }^{1}$

To a vigorously stirred suspension of silica gel ($105 \mathrm{~g}, 1.75 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was added dropwise an aqueous solution of $\mathrm{NaIO}_{4}(0.65 \mathrm{M}, 105 \mathrm{~mL}, 68.2 \mathrm{mmol})$. A solution of trans-cyclohexane-1, 2-diol ($6.08 \mathrm{~g}, 52.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was then added, and the reaction was stirred for 24 h . The mixture was filtered on a sintered glass, and the silica gel was thoroughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent afforded the title compound as a colorless oil. Yield: $75 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.78 \mathrm{ppm}(\mathrm{t}, 2 \mathrm{H}, \mathrm{CHO})$, $2.49 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right), 1.67 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.

General Procedure for the MCP

The MCP was carried out in an airtight Schlenk flask. A typical procedure for the synthesis of HBP (Table 1, entry 3) is given below. Hexanedioic acid, 10-undecenoic acid, hexane-1, 6-dial, 1, 6-diisocyanohexane and THF were mixed and heated to $40^{\circ} \mathrm{C}$ with stirring in a 25 mL Schlenk flask. Initially, the mixture is heterogeneous, and the solution turned clear after stirring for 0.5 h . An aliquot of mixture was taken out at a desired time to follow the polymerization kinetics by NMR. Finally, the reaction mixture was precipitated into diethyl ether after 48 h , and a white solid was obtained and dried under vacuum to determine the polymer yield.

When gelation occurred (Table 1, entry 1), the typical procedure is given below. Hex-
anedioic acid, hexane-1, 6-dial, 1, 6-diisocyanohexane and THF were mixed and heated to $40^{\circ} \mathrm{C}$ with stirring in a 25 mL Schlenk flask. Initially, the mixture is heterogeneous, and the solution turned clear after stirring for 0.5 h . After 2 h , the stirring became quit slowly, and after 4 h , gelation occurred. The mixture was kept at this temperature for another 44 h . Finally, the gel was collected and dried under vacuum to get a yellow solid. The solubility of the gels in DMF, DMSO was tested both before and after being dried.

Derivation of Formulas ${ }^{2}$

$N=$ the initial molar number of the dialdehyde $\left(\mathbf{B}_{2}\right)$ or the diisocyanide $\left(\mathbf{C}_{2}\right)$
When the molar ratio of $\mathbf{A}_{2} / \mathbf{B}_{2} / \mathbf{C}_{2} / \mathbf{A}=x / 1 / 1 / y$
$x N=$ the initial molar number of the carboxylic diacid $\left(\mathbf{A}_{2}\right)$
$y N=$ the initial molar number of the mono-acid (A)
The initial total molar number of molecules in the polymerization system:

$$
\begin{equation*}
N_{0}=2 N+x N+y N=(2+x+y) N \tag{1}
\end{equation*}
$$

Define $p=$ the fraction of acid groups being reacted at a given time t
$N_{t}=$ the total number of remaining molecules at a given time t
Assume that intramolecular cyclization as a competing and chain terminating process during propagation is absent. Then
$p=\frac{\frac{3}{2}\left(N_{0}-N_{t}\right)}{3(2 x+y) N}$
Combination of (1) and (2):
$\frac{2(2 x+y) \bullet p}{2+x+y}=1-\frac{N_{t}}{N_{0}}$
The number average degree of polymerization:
$X_{n}=\frac{N_{0}}{N_{t}}$
Combination of (3) and (4):
$\frac{2(2 x+y) \bullet p}{2+x+y}=1-\frac{1}{X_{n}}$
Assume that gelation occurs when $X_{n}=\infty$. Then the critical gelation condition is

$$
\begin{equation*}
\frac{2(2 x+y) \bullet p}{2+x+y}=1 \tag{6}
\end{equation*}
$$

Assume $p=1$. Then the critical gelation condition is

$$
\begin{equation*}
3 x+y=2 \tag{7}
\end{equation*}
$$

Table S1. Synthesis of functional HBPs with tunable DB and DF ${ }^{a}$

Entry	Ratio ($\left.\mathbf{A}_{2} / \mathbf{B}_{2} / \mathbf{C}_{2} / \mathbf{A}\right)^{b}$	$\mathrm{Mn}(\mathrm{kDa}) / \mathrm{PDI}^{\text {c }}$	$\mathrm{DB}(\%) / \mathrm{DF}(\%)^{d}$	Yield/\% ${ }^{e}$
$1{ }^{\text {g }}$	0.10/1.0/1.0/0.85	2.3/1.47	-	-
2^{g}	0.10/1.0/1.0/1.1	4.1/1.26	36/64	19^{f}
3	0.20/1.0/1.0/0.70	3.5/2.25	-	
4	0.25/1.0/1.0/1.3	-	-	Gel
5	0.40/1.0/1.0/0.27	-	-	Gel
6	0.45/1.0/1.0/0	-	-	Gel
7	0.50/1.0/1.0/0	-	-	Gel
8	0.60/1.0/1.0/0	-	-	Gel
${ }^{a}$ Conducted in THF. ${ }^{b}$ The concentration of diisocyanide or dialdehyde was $1.0 \mathrm{~mol} / \mathrm{L}$. ${ }^{c}$ Measured by GPC in THF. ${ }^{d}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{e}$ Determined after precipitation in ethyl ether and vacuum dryness $\left(30^{\circ} \mathrm{C}, 12 \mathrm{~h}\right) .{ }^{f}$ The relatively low yields was due to the loss of oligomers during precipitation process. ${ }^{g}$ The Mn of these two entries were characterized in-situ, and no polymers were obtained after precipitation because of the good solubility of oligomers in ethyl ether.				

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the HBP (Table 1, entry 2) obtained from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathbf{C}_{2}\left(0.41 / 1.0 / 1.0,\left[\mathbf{B}_{2}\right]=\left[\mathbf{C}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}, \mathrm{THF}\right)$.

Figure S2. Model reactions between isocyanides and aldehydes.

Figure S3. Time-dependent ${ }^{1} \mathrm{H}$ NMR spectra of the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathbf{C}_{2}+\mathbf{A}$ (molar ratio, 0.33/1.0/1.0/0.50) ([$\left.\left.\mathbf{B}_{2}\right]=\left[\mathbf{C}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}, \mathrm{THF}\right)$.

Figure S4. GPC traces of HBPs obtained from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathbf{C}_{2}+\mathbf{A}$ (0.33/1.0/1.0/0.50, THF) at two different concentrations of \mathbf{C}_{2}.

Scheme S1. Synthesis of HBPs from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathrm{C}_{2}+\mathrm{A}^{\prime}$.

Figure S5. GPC traces of the HBP obtained from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathbf{C}_{2}+\mathbf{A}$, (0.33/1.0/1.0/0.50, $\left.\left[\mathbf{B}_{2}\right]=\left[\mathbf{C}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}, \mathrm{THF}\right)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of the HBP obtained from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathbf{C}_{2}+\mathbf{A}$, ($0.33 / 1.0 / 1.0 / 0.50,\left[\mathbf{B}_{2}\right]=\left[\mathbf{C}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}$, THF). The $\mathrm{DF}=\mathrm{j} / \mathrm{a}=37 \%$ was determined by the integration ratio of the proton j at 1.9 ppm (functional alkynyl group) and the proton a (the sum of functional linkage and branching linkage). The $\mathrm{DB}=1-\mathrm{DF}=63 \%$.

Scheme S2. Synthesis of HBPs from the MCP of $\mathbf{A}_{2}+\mathbf{B}_{2}+\mathrm{C}_{2}+$ B (B represents phenylacetaldehyde).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{HBP}(\mathrm{Mn}=16.6 \mathrm{kDa}, \mathrm{PDI}=1.80$, measured by GPC in DMF) obtained from the MCP of $\mathbf{A}_{\mathbf{2}}+\mathbf{B}_{2}+\mathbf{C}_{\mathbf{2}}+\mathbf{B}\left(1.0 / 0.33 / 1.0 / 0.50,\left[\mathbf{A}_{2}\right]=\left[\mathbf{C}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}\right.$, THF). The $\mathrm{DB}=\mathrm{a} /(\mathrm{a}+\mathrm{b})=61 \%$ and $\mathrm{DF}=\mathrm{b} /(\mathrm{a}+\mathrm{b})=39 \%$ was determined by the integration ratio of proton a at 4.8 ppm (the branched structures) and the proton b at 4.9 ppm (the functional structures).

Scheme S3. Synthesis of HBPs from the MCP of $\mathrm{A}_{2}+\mathrm{B}_{2}+\mathrm{C}_{2}+\mathrm{C}$ (C represents methyl isocyanoacetate).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{HBP}(\mathrm{Mn}=25.5 \mathrm{kDa}, \mathrm{PDI}=1.67$, measured by GPC in DMF) obtained from the MCP of $\mathbf{A}_{\mathbf{2}}+\mathbf{B}_{\mathbf{2}}+\mathbf{C}_{\mathbf{2}}+\mathbf{C}\left(1.0 / 0.33 / 1.0 / 0.50,\left[\mathbf{A}_{\mathbf{2}}\right]=\left[\mathbf{B}_{2}\right]=1.0 \mathrm{~mol} / \mathrm{L}\right.$, THF). The $\mathrm{DB}=\mathrm{a} /(\mathrm{a}+\mathrm{b})=63 \%$ and $\mathrm{DF}=\mathrm{b} /(\mathrm{a}+\mathrm{b})=37 \%$ was determined by the integration ratio of proton a at 4.8 ppm (the branched structures) and the proton b at 5.1 ppm (the functional structures). Moreover, the DB and DF calculated by the proton c and d gave similar results ($\mathrm{DB}=65 \%$ and $\mathrm{DF}=35 \%$).

References

1. S. Lopez, F. Fernandez-Trillo, P. Midon, L. Castedo, C. Saa, J. Org. Chem. 2005, 70, 6346.
2. W. H. Carothers, Trans. Faraday Soc. 1936, 32, 39.
