Supporting Information

Functional Highly Branched Polymers from Multicomponent Polymerization (MCP) Based on the ABC Type Passerini Reaction

Xin-Xing Deng, Yang Cui, Fu-Sheng Du and Zi-Chen Li*

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China E-mail: zcli@pku.edu.cn; Tel: +86-10-6275-5543; Fax: +86-10-6275-1708.

E mun. <u>zen e pratedaten,</u> 1en. 100 10 0275 5515, 1ax. 100 10 02

Experiment Section

Materials

Silica gel (200-300 mesh, Yantai Chem. Res. Inst.), sodium periodate (NaIO₄, AR, Xi Long Chem. Co.), *trans*-cyclohexane-1,2-diol (Alfa Aesar, >98%), 1, 6-diisocyanohexane (Aldrich, >98%), hexanedioic acid (Sinopharm Chem. Reagent, >99.5%), 10-undecynoic acid (Alfa Aesar, >96%), 10-undecenoic acid (Alfa Aesar, >99%), phenylacetaldehyde (Alfa aesar, >95%) and methyl isocyanoacetate(Alfa aesar, >95%) were used as received. All the solvents were purchased from commercial sources and further purified by conventional methods.

Measurements

The number-average molecular weight (*Mn*) and polydispersity index (PDI) of polymers were determined by gel permeation chromatography (GPC) equipped with a 2414 refractive index detector, a Waters 1525 binary HPLC pump, and three Waters Styragel HT columns (HT2, HT3, HT4). The columns were thermostated at 35 °C, and THF was used as an eluent at a flow rate of 1.0 mL/min. Calibration was made against standard linear polystyrene

(PSt), the obtained datum was processed on professional software.

¹H NMR (400 or 300 MHz) spectra were recorded in CDCl₃ on a Bruker ARX-400 spectrometer or a Varian Gemini 300 spectrometer with tetramethylsilane (TMS) as the internal reference for chemical shifts.

Synthesis of Hexane-1, 6-dial¹

To a vigorously stirred suspension of silica gel (105 g, 1.75 mol) in CH₂Cl₂ (500 mL) was added dropwise an aqueous solution of NaIO₄ (0.65 M, 105 mL, 68.2 mmol). A solution of *trans*-cyclohexane-1, 2-diol (6.08 g, 52.3 mmol) in CH₂Cl₂ (200 mL) was then added, and the reaction was stirred for 24 h. The mixture was filtered on a sintered glass, and the silica gel was thoroughly washed with CH₂Cl₂. Evaporation of the solvent afforded the title compound as a colorless oil. Yield: 75%. ¹H NMR (CDCl₃): δ = 9.78 ppm (t, 2H, CHO), 2.49 ppm (m, 4H, CH₂CHO), 1.67 ppm (m, 4H, CH₂).

General Procedure for the MCP

The MCP was carried out in an airtight Schlenk flask. A typical procedure for the synthesis of HBP (Table 1, entry 3) is given below. Hexanedioic acid, 10-undecenoic acid, hexane-1, 6-dial, 1, 6-diisocyanohexane and THF were mixed and heated to 40 °C with stirring in a 25 mL Schlenk flask. Initially, the mixture is heterogeneous, and the solution turned clear after stirring for 0.5 h. An aliquot of mixture was taken out at a desired time to follow the polymerization kinetics by NMR. Finally, the reaction mixture was precipitated into diethyl ether after 48 h, and a white solid was obtained and dried under vacuum to determine the polymer yield.

When gelation occurred (Table 1, entry 1), the typical procedure is given below. Hex-

anedioic acid, hexane-1, 6-dial, 1, 6-diisocyanohexane and THF were mixed and heated to 40 °C with stirring in a 25 mL Schlenk flask. Initially, the mixture is heterogeneous, and the solution turned clear after stirring for 0.5 h. After 2 h, the stirring became quit slowly, and after 4 h, gelation occurred. The mixture was kept at this temperature for another 44 h. Finally, the gel was collected and dried under vacuum to get a yellow solid. The solubility of the gels in DMF, DMSO was tested both before and after being dried.

Derivation of Formulas²

N = the initial molar number of the dialdehyde (**B**₂) or the diisocyanide (**C**₂)

When the molar ratio of $\mathbf{A}_2/\mathbf{B}_2/\mathbf{C}_2/\mathbf{A}=x/1/1/y$

xN = the initial molar number of the carboxylic diacid (**A**₂) yN = the initial molar number of the mono-acid (**A**) The initial total molar number of molecules in the polymerization system:

 $N_0 = 2N + xN + yN = (2 + x + y)N$ (1)

Define p = the fraction of acid groups being reacted at a given time t

 N_t = the total number of remaining molecules at a given time t

Assume that intramolecular cyclization as a competing and chain terminating process during propagation is absent. Then

$$p = \frac{\frac{3}{2}(N_0 - N_t)}{3(2x + y)N}$$
(2)

Combination of (1) and (2):

$$\frac{2(2x+y) \bullet p}{2+x+y} = 1 - \frac{N_t}{N_0}$$
(3)

The number average degree of polymerization:

$$X_n = \frac{N_0}{N_t} \qquad (4)$$

Combination of (3) and (4):

$$\frac{2(2x+y)\bullet p}{2+x+y} = 1 - \frac{1}{X_n}$$
 (5)

Assume that gelation occurs when $X_n = \infty$. Then the critical gelation condition is

$$\frac{2(2x+y)\bullet p}{2+x+y} = 1 \quad (6)$$

Assume p = 1. Then the critical gelation condition is

 $3x + y = 2 \qquad (7)$

Entry	Ratio $(\mathbf{A}_2/\mathbf{B}_2/\mathbf{C}_2/\mathbf{A})^b$	Mn(kDa)/PDI ^c	DB(%)/DF(%) ^d	Yield/% e
1 ^g	0.10/1.0/1.0/0.85	2.3/1.47	-	-
2 ^g	0.10/1.0/1.0/1.1	4.1/1.26	36/64	19 ^{<i>f</i>}
3	0.20/1.0/1.0/0.70	3.5/2.25	-	-
4	0.25/1.0/1.0/1.3	-	-	Gel
5	0.40/1.0/1.0/0.27	-	-	Gel
6	0.45/1.0/1.0/0	-	-	Gel
7	0.50/1.0/1.0/0	-	-	Gel
8	0.60/1.0/1.0/0	-	-	Gel

Table S1. Synthesis of functional HBPs with tunable DB and DF^{*a*}

^{*a*} Conducted in THF. ^{*b*} The concentration of diisocyanide or dialdehyde was 1.0 mol/L. ^{*c*} Measured by GPC in THF. ^{*d*} Determined by ¹H NMR spectra. ^{*e*} Determined after precipitation in ethyl ether and vacuum dryness (30 °C, 12 h). ^{*f*} The relatively low yields was due to the loss of oligomers during precipitation process. ^{*g*} The Mn of these two entries were characterized in-situ, and no polymers were obtained after precipitation because of the good solubility of oligomers in ethyl ether.

Figure S1. ¹H NMR spectrum of the HBP (Table 1, entry 2) obtained from the MCP of $A_2+B_2+C_2$ (0.41/1.0/1.0, $[B_2]=[C_2]=1.0$ mol/L, THF).

Figure S2. Model reactions between isocyanides and aldehydes.

Figure S3. Time-dependent ¹H NMR spectra of the MCP of $A_2+B_2+C_2+A$ (molar ratio, 0.33/1.0/1.0/0.50) ([**B**₂]=[**C**₂]= 1.0 mol/L, THF).

Figure S4. GPC traces of HBPs obtained from the MCP of $A_2+B_2+C_2+A$ (0.33/1.0/1.0/0.50, THF) at two different concentrations of C_2 .

Figure S5. GPC traces of the HBP obtained from the MCP of $A_2+B_2+C_2+A'$ (0.33/1.0/1.0/0.50, $[B_2]=[C_2]=1.0$ mol/L, THF).

Figure S6. ¹H NMR spectrum of the HBP obtained from the MCP of $A_2+B_2+C_2+A'$ (0.33/1.0/1.0/0.50, $[B_2]=[C_2]=1.0$ mol/L, THF). The DF = j/a = 37% was determined by the integration ratio of the proton j at 1.9 ppm (functional alkynyl group) and the proton a (the sum of functional linkage and branching linkage). The DB = 1- DF = 63%.

Scheme S2. Synthesis of HBPs from the MCP of $A_2+B_2+C_2+B$ (B represents phenylacetaldehyde).

Figure S7. ¹H NMR spectrum of the HBP (Mn = 16.6 kDa, PDI = 1.80, measured by GPC in DMF) obtained from the MCP of $A_2+B_2+C_2+B$ (1.0/0.33/1.0/0.50, $[A_2]=[C_2]=1.0$ mol/L, THF). The DB = a/(a+b) =61% and DF = b/(a+b) =39% was determined by the integration ratio of proton *a* at 4.8 ppm (the branched structures) and the proton *b* at 4.9 ppm (the functional structures).

Scheme S3. Synthesis of HBPs from the MCP of $A_2+B_2+C_2+C$ (C represents methyl isocyanoacetate).

Figure S8. ¹H NMR spectrum of the HBP (Mn = 25.5 kDa, PDI = 1.67, measured by GPC in DMF) obtained from the MCP of $A_2+B_2+C_2+C$ (1.0/0.33/1.0/0.50, $[A_2]=[B_2]=1.0$ mol/L, THF). The DB = a/(a+b) =63% and DF = b/(a+b) =37% was determined by the integration ratio of proton *a* at 4.8 ppm (the branched structures) and the proton *b* at 5.1 ppm (the functional structures). Moreover, the DB and DF calculated by the proton c and d gave similar results (DB = 65% and DF = 35%).

References

- 1. S. Lopez, F. Fernandez-Trillo, P. Midon, L. Castedo, C. Saa, J. Org. Chem. 2005, 70, 6346.
- 2. W. H. Carothers, *Trans. Faraday Soc.* 1936, **32**, 39.