Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information

High Refractive Index Polyvinylsulfide Materials

Prepared By Selective Radical Mono-Addition Thiol-Yne Chemistry

Robert Pötzsch^{1,2}, Brian Stahl³, Hartmut Komber¹, Craig Hawker³ and Brigitte Voit^{1,2*}

¹Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany

²Technische Universität Dresden, Center for Advancing Electronics Dresden (cfaed) and Chair of Organic Chemistry of Polymers, 01062 Dresden, Germany

³Materials Research Laboratory, Materials Department, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA

Syntheses:

Synthesis of model compounds **B**₂**b** and **b**₃:

1,3,5-Tris(phenylethynyl)benzene (189 mg, 0.5 mmol), hexanethiol (65 mg, 0.525 mmol or 196 mg, 1.575 mmol), AIBN (12.3 mg, 0.075 mmol) and dry toluene (1.5 ml) were mixed together, stirred and purged with argon for 10 min. The reaction mixture was heated at 90°C for 2 hours. The solvent was then removed by rotary evaporation and the sample was analyzed by ¹H and ¹³C NMR spectroscopy.

Synthesis of the model compound 1,2-dihexyldisulfide:

One drop of hexanethiol was dissolved in 0.6 ml of deuterated dichloromethane in a NMR tube. A few drops of triethylamine and a few chips of iodine were added. The oxidation of the thiol to disulfide was followed by ¹H and ¹³C NMR spectroscopy.

NMR spectra:

Figure S1. ¹³C and ¹H NMR spectra of the model compound B_2b (solvent: CD_2Cl_2). The reaction product is not pure B_2b as intended from monomer stoichiometry but also contains unreacted B_3 and higher substituted compounds (Bb_2 and b_3) but in low amounts.

Figure S2. ¹³C and ¹H NMR spectrum of the model compound **b**₃ (solvent: CD₂Cl₂).

Figure S3. ¹H and ¹³C NMR spectrum of hb-P8 (solvent: CD₂Cl₂).

Figure S4. ¹³C NMR spectrum of the model compound 1,2-dihexyldisulfide (solvent: CD₂Cl₂).

Figure S5. ¹H and ¹³C NMR spectrum of hb-P9 (solvent: CDCl₃).

Figure S6. ¹H and ¹³C NMR spectrum of hb-P10 (solvent: CDCl₃)..

Figure S7. ¹H and ¹³C NMR spectrum of lin-P4 (solvent: CDCl₃).

Miscellaneous:

Figure S8. IR spectra of lin-P4 (A), hb-P9 (B) and hb-P10 (C).

Figure S9. UV-Vis spectra of PVS materials in CH₂Cl₂.

Figure S10. TGA curves of linear and hb-PVS materials in nitrogen atmosphere.

Figure S11. DSC traces of linear and hyperbranched PVS materials.

Figure S12. AFM height images (10 μm * 10 μm) of thin films of lin-P3 (A), hb-P3 (B) and hb-P7 (C).