Supporting Information

Dual-Temperature and pH Responsive (Ethylene Glycol)-Based

Nanogels via Structural Design

Yohei Kotsuchibashi^{ab} and Ravin Narain*b

^aInternational Center for Young Scientists (ICYS) and International Center for

Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS),

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^bDepartment of Chemical and Materials Engineering, University of Alberta, 116 St and

85 Ave, Edmonton, Alberta, T6G 2G6, Canada

* Corresponding author

Department of Chemical and Materials Engineering, University of Alberta, 116 St and

85 Ave, Edmonton, Alberta, T6G 2G6, Canada

TEL: +1-780-492-1736, FAX. +1-780-492-2881

Email: narain@ualberta.ca

Preparation of (ethylene glycol)-based nanogels (NGs)

NG1 and 2

Macro-CTA of P(MEO₂MA₃₈-*co*-OEGMA₁₀) (40 mg, 3.3×10^{-3} mmol), MEO₂MA (149.1 mg, 0.79 mmol), cross-linker (CL) of di(ethylene glycol) dimethacrylate (48.0 mg, 0.20 mmol), and VA-044 (4.27 × 10⁻¹ mg, 1.32 × 10⁻³ mmol) ([MEO₂MA]₀/[CL]₀/[Macro-CTA]₀/[VA-044]₀ = 240/60/1/0.4) were dissolved in a 5 mL water/2-propanol (1/4 (mL) = **NG1**, 4/1 (mL) = **NG2**) solution at 0 °C. After degassing with nitrogen gas for 30 min at 0 °C, the mixture was allowed to polymerize for 20 h at 37 °C. The polymerization container was soaked into liquid nitrogen to stop the reactions. NG was purified by dialysis (MWCO: 12~14 kDa) in distilled water for 3 days at 4 °C and was collected by freeze-drying.

NG3 and 4

Macro-CTA of P(MEO₂MA₃₈-*co*-OEGMA₁₀) (40 mg, 3.3×10^{-3} mmol), MEO₂MA (177.0 mg, 0.94 mmol), CL (12.0 mg, 5.0×10^{-2} mmol), and VA-044 (4.27 × 10⁻¹ mg, 1.32×10^{-3} mmol) ([MEO₂MA]₀/[CL]₀/[Macro-CTA]₀/[VA-044]₀ = 285/15/1/0.4) were dissolved in a 5 mL water/2-propanol (1/4 (mL) = NG3, 4/1 (mL) = NG4) solution at 0

°C. The NGs were prepared and purified by same condition with above NGs.

NG5~8

Macro-CTA of P(MEO₂MA₆₆-*co*-OEGMA₁₇) (83 mg, 4.0×10^{-3} mmol), MEO₂MA (**NG5**: 179.0 mg, 0.95 mmol, **NG6**: 201.4 mg, 1.07 mmol, **NG7**: 119.3 mg, 0.63 mmol, and **NG8**: 134.2 mg, 0.71 mmol), CL (**NG5**: 57.6 mg, 0.24 mmol, **NG6**: 28.8 mg, 0.12 mmol, **NG7**: 38.4 mg, 0.16 mmol, and **NG8**: 19.2 mg, 7.9 × 10⁻² mmol), and VA-044 (4.27 × 10⁻¹ mg, 1.32 × 10⁻³ mmol) ([MEO₂MA]₀/[CL]₀/[Macro-CTA]₀/[VA-044]₀ = 240/60/1/0.33 (**NG5**), 270/30/1/0.33 (**NG6**), 160/40/1/0.33 (**NG7**), and 180/20/1/0.33 (**NG8**)) were dissolved in a 5 mL water/2-propanol (1/4 (mL)) solution at 0 °C. The NGs were prepared and purified by same condition with above NGs.

NG9~11

Macro-CTA of P(MEO₂MA₉₂-*co*-OEGMA₂₄) (114 mg, 4.0×10^{-3} mmol), MEO₂MA (**NG9**: 179.0 mg, 0.95 mmol, **NG10**: 201.4 mg, 1.07 mmol), CL (**NG9**: 57.6 mg, 0.24 mmol, **NG10**: 28.8 mg, 0.12 mmol), and VA-044 (4.27×10^{-1} mg, 1.32×10^{-3} mmol) ([MEO₂MA]₀/[CL]₀/[Macro-CTA]₀/[VA-044]₀ = 240/60/1/0.33 (**NG9**), 270/30/1/0.33

(**NG10**)) were dissolved in a 5 mL water/2-propanol (1/4 (mL)) solution at 0 °C. The NGs were prepared and purified by same condition with above NGs. The preparation method of **NG11** was shown in experimental part in this paper.

FIGURE LEGENDS

Figure S1. Transmittance change of 0.5 w/v% (A) $P(MEO_2MA_{38}\text{-}co\text{-}OEGMA_{10})$, (B) $P(MEO_2MA_{66}\text{-}st\text{-}OEGMA_{10})$, and (C) $P(MEO_2MA_{92}\text{-}st\text{-}OEGMA_{24})$ in water.

Figure S2. Size distribution histogram of 0.1 wt% NG 9 in water at (A) 15 and (B) 37 °C.

Figure S3. Transmittance change of $P(MEO_2MA_{92}-st-OEGMA_{24})$ in pH 2 $HCl_{aq.}$ at different concentrations.

Figure S4. Transmittance change of 0.1 wt% P(MEO₂MA₉₂-*st*-OEGMA₂₄) in pH 2 HCl_{aq.} and 10 mM NaCl_{aq.}.

Figure S5. Size distribution histogram of 0.1 wt% NG 9 in pH 2 HCl_{aq.} at (A) 15 and (B) 37 °C and in 10 mM NaCl_{aq.} at (C) 15 and (D) 37 °C.

Figure S6. Transmittance change of 0.1 wt% NG9 in 50 mM NaCl_{aq}.

Figure S1. Transmittance change of 0.5 w/v% (A) $P(MEO_2MA_{38}-co-OEGMA_{10})$, (B) $P(MEO_2MA_{66}-st-OEGMA_{10})$, and (C) $P(MEO_2MA_{92}-st-OEGMA_{24})$ in water.

Figure S2. Size distribution histogram of 0.1 wt% NG 9 in water at (A) 15 and (B) 37 °C.

Figure S3. Transmittance change of $P(MEO_2MA_{92}-st-OEGMA_{24})$ in pH 2 $HCl_{aq.}$ at different concentrations.

Figure S4. Transmittance change of 0.1 wt% $P(MEO_2MA_{92}-st-OEGMA_{24})$ in pH 2 $HCl_{aq.}$ and 10 mM $NaCl_{aq.}$.

Figure S5. Size distribution histogram of 0.1 wt% NG 9 in pH 2 HCl_{aq.} at (A) 15 and (B) 37 °C and in 10 mM NaCl_{aq.} at (C) 15 and (D) 37 °C.

Figure S6. Transmittance change of 0.1 wt% NG9 in 50 mM NaCl_{aq}.