Supporting Information

Engineering the band gap and energy level of conjugated polymers by

using a second acceptor unit

Khalid Mahmood, Zheng-Ping Liu, *Cuihong Li, Zhen Lu, Xiao Liu, Tao Fang, Qiaohong Peng, Guangwu Li, Lin Li, and Zhishan Bo*

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China

Fabrication and Characterization of Organic Field-Effect Transistors (OFETs)

Top-contact/bottom-gate (TC/BG) OTFT devices were fabricated using n⁺-Si/SiO₂ substrates where n⁺-Si and SiO₂ were used as the gate electrode and gate dielectric, respectively. The substrates were subjected to cleaning using ultrasonication in acetone, a cleaning agent, deionized water (twice), and *iso*-propanol. The cleaned substrates were dried under vacuum at 80 °C. The substrates were then treated with plasma for 15 min and transfer into a glove box. The substrates were modified with OTS according to the literature reported by Bao and coworkers. Polymer or polymer/PC₇₁BM films were casted or spin-coated on the OTS-modified Si/SiO₂ substrate from ODCB or TCB and 2 vol % DIO with the polymer concentration of 10 mg/mL, optionally followed by thermal annealing at 160 °C for 30 min under nitrogen. After polymer thin film deposition, about 25 nm thick gold was deposited as source and drain contacts using a shadow mask. The OTFT devices had a channel length (*L*) of 50 µm and a channel width (*W*) of 2.5 mm. *J-V* characteristics were obtained using an Agilent B2902A Source Meter with a Micromanipulator 6150 probe station in a clean and shielded box at room temperature in air.

Fabrication and characterization of BHJ polymer solar cells

All the polymer solar cell devices were fabricated with the device configuration of glass/ITO/PEDOT:PSS/polymer:PC₇₁BM/LiF/Al. The conductivity of ITO is 15 Ω/\Box , and PEDOT:PSS is Baytron Al 4083 from H.C. Starck. ITO-coated glass substrates were ultrasonically cleaned sequentially in detergent, water, acetone, and iso-propanol. The substrates were covered by a 30 nm layer of PEDOT: PSS by spin coating. After annealing in air at 140 °C for 10 min, the samples were cooled to room temperature. The substrates were then transferred into a nitrogen-filled glove box. The polymers and PC₇₁BM were dissolved at a 1:2 weight ratio in DCB with 2% (v/v) of DIO. The solutions were then heated at 90 °C and stirred overnight. The photoactive layer was then spin coated onto the PEDOT:PSS layer at 1500-2000 rmp. The top electrode was thermally evaporated, with a 0.6 nm LiF layer, followed by 80 nm of aluminum at a pressure of 10⁻⁶ Torr through a shadow mask. Six cells were fabricated on one substrate and the effective area of every cell is 4 mm². The measurement of devices was conducted in the glove box. Current-voltage characteristics were recorded using a Keithley 2400 Source Meter under AM 1.5 illumination with an intensity of 100 mW/cm² from a solar simulator (Model SS-50A, photo Emission Tech., Inc.). The J-V curves were recorded at the temperature of about 20 °C. The external quantum efficiency (EQE) spectra were characterized using a Keithley 485 picoammeter under illumination of monochromatic light through the ITO side of devices.

Figure S1. DSC curve of P1-3 with a scanning rate of 10 °C/min.

Sample	2θ(°)				d-spacing (Å)	
P1	4.31	8.54	12.16	19.54	25.47	20.45 10.35 7.27 4.54 3.49
P2	4.25	8.22	12.23	19.68	23.60	20.75 10.75 6.65 4.50 3.61
P3	4.39	8.65	12.66	19.61	25.62	20.11 10.22 6.99 4.52 3.47

 Table S1. Summary of XRD data of powdery samples (P1-3)

Figure S2. X-ray diffraction patterns of powdery P1-3 samples.

Figure S3. Output and transfer characteristics of P1 (g, h), P2 (i, j), and P3 (k, l) devices of the spincoated film of the blend of P1-3:PC₇₁BM in DCB with 2% DIO (by volume) transistors based on OTS-modified Si/SiO₂ substrate. Hole mobilities are 7.00×10^{-4} , 2.37×10^{-3} , and 2.90×10^{-4} cm²V⁻¹s⁻¹ for P1, P2, and P3, respectively.

	$\mu (cm^2 V^{-1} s^{-1})^a$	$I_{on/off}$	time (min)	annealing temperature (°C)
P1	6.06×10 ⁻⁴ (4.95×10 ⁻⁴)	>10 ³	30	160
P1 :PC ₇₁ BM	7.00×10 ⁻⁴ (5.75×10 ⁻⁴)	~10 ²	30	160
P2	1.28×10 ⁻³ (1.24×10 ⁻³)	>10 ³	30	160
P2 :PC ₇₁ BM	2.37×10 ⁻³ (1.34×10 ⁻³)	>10 ²	30	160
Р3	1.94×10 ⁻⁴ (1.37×10 ⁻⁴)	>10 ³	30	160
P3 :PC ₇₁ BM	2.90×10 ⁻⁴ (2.52×10 ⁻⁴)	>10 ²	30	160

Table S2. OFET Device Performances of polymers P1, P2, and P3.

^{*a*} Maximum value of hole mobilities after annealing at 160 °C for 30 min and average mobilities are shown in parentheses for more than 3 or 3 devices are tested for each polymer with or without $PC_{71}BM$.

active layer	solvent	$J_{\rm sc}$ (mAcm ⁻²)	$V_{\rm oc}\left({ m V} ight)$	FF	PCE (%)
P1 :PC ₇₁ BM (1:1)	DCB	5.85	0.77	0.40	1.80
	DCB	5.69	0.77	0.39	1.71
	DCB	5.61	0.75	0.39	1.66
P1 :PC ₇₁ BM (1:1)	DCB	5.59	0.76	0.40	1.70
	DCB	4.89	0.72	0.40	1.44
	DCB	5.51	0.72	0.39	1.53
P1 :PC ₇₁ BM (1:1)	DCB	5.77	0.75	0.40	1.73
	DCB	5.39	0.74	0.40	1.59
P1 :PC ₇₁ BM (1:2)	DCB	7.58	0.79	0.44	2.62
		7.52	0.78	0.42	2.50
P1 :PC ₇₁ BM (1:2)	DCB	7.40	0.78	0.44	2.59
		7.75	0.79	0.44	2.74
P1 :PC ₇₁ BM (1:2)	DCB	7.64	0.79	0.45	2.71
		7.61	0.78	0.45	2.70
		7.89	0.78	0.45	2.75
P1 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	5.36	0.77	0.48	1.99
		5.05	0.76	0.48	1.85
P1 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	5.03	0.76	0.51	1.97
		5.12	0.75	0.51	1.96
P1 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	4.79	0.76	0.50	1.83
		4.76	0.75	0.50	1.80

 Table S3. OPV Performances of P1

active layer	solvent	$J_{\rm sc}$ (mAcm ⁻²)	$V_{ m oc}\left({ m V} ight)$	FF	PCE (%)
P2 :PC ₇₁ BM (1:1)	DCB	5.33	0.84	0.36	1.63
		5.44	0.82	0.37	1.63
		5.46	0.80	0.37	1.63
P2 :PC ₇₁ BM (1:1)	DCB	5.43	0.85	0.38	1.75
		5.36	0.84	0.38	1.69
P2 :PC ₇₁ BM (1:1)	DCB	5.48	0.80	0.38	1.66
		5.38	0.78	0.38	1.62
P2 :PC ₇₁ BM (1:2)	DCB	5.79	0.83	0.47	2.25
		5.64	0.82	0.47	2.18
		5.66	0.80	0.46	2.07
P2 :PC ₇₁ BM (1:2)	DCB	5.82	0.82	0.46	2.21
		5.56	0.81	0.47	2.13
		5.49	0.81	0.46	2.05
		5.55	0.80	0.46	2.04
P2 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	6.70	0.84	0.54	3.01
		7.57	0.85	0.53	3.41
		7.02	0.84	0.54	3.18
P2 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	6.60	0.84	0.54	3.02
		7.33	0.85	0.54	3.38
P2 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	6.41	0.84	0.52	2.83
		7.13	0.83	0.51	3.06

Table S4. OPV Performances of P2

Table S5. OPV Performances of P3

active layer	solvent	$J_{\rm sc}$ (mAcm ⁻²)	$V_{\rm oc}\left({ m V} ight)$	FF	PCE (%)
P3 :PC ₇₁ BM (1:1)	DCB	3.87	0.90	0.37	1.30
		4.10	0.87	0.42	1.48
		4.18	0.89	0.38	1.42
P3 :PC ₇₁ BM (1:1)	DCB	4.03	0.88	0.39	1.39
		4.06	0.87	0.40	1.40
		4.07	0.86	0.39	1.37
P3 :PC ₇₁ BM (1:1)	DCB	4.04	0.89	0.38	1.37
		4.01	0.90	0.38	1.38
		3.83	0.89	0.37	1.26
P3 :PC ₇₁ BM (1:2)	DCB	7.07	0.93	0.42	2.75
		7.09	0.90	0.43	2.75
		7.06	0.90	0.42	2.69
P3 :PC ₇₁ BM (1:2)	DCB	6.76	0.83	0.43	2.39
		7.18	0.89	0.42	2.68
		7.07	0.86	0.42	2.57
P3 :PC ₇₁ BM (1:2)	DCB	7.02	0.92	0.43	2.79
		6.96	0.94	0.41	2.70
		6.80	0.84	0.40	2.53
P3 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	2.99	0.82	0.53	1.29
		2.89	0.80	0.52	1.21
P3 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	3.63	0.76	0.53	1.47
		3.63	0.75	0.54	1.49
P3 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	3.58	0.78	0.54	1.50
		3.50	0.76	0.54	1.45
P3 :PC ₇₁ BM (1:2)	DCB+ 2% DIO	3.33	0.80	0.53	1.43
		3.27	0.79	0.54	1.39

Figure S4. Graphical representation of photovoltaic performance of P1-3.

