Supplementary Information for

The $\mathrm{Pd}(\mathrm{AcO})_{2} / t-\mathrm{Bu}_{3} \mathrm{P} / \mathrm{K}_{3} \mathrm{PO}_{4}$ catalytic system for the control of the Suzuki cross-coupling polymerisation

by
Roberto Grisorio, Piero Mastrorilli and Gian Paolo Suranna
DICATECh - Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica del Politecnico di Bari, via Orabona, 4 I-70125 Bari, Italy

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 2,7-diphenyl-9,9-di-n-octylfluorene.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectrum of 2,7-diphenyl-9,9-di-n-octylfluorene.

Figure S3. HRMS(+) spectrogram of the reaction mixture obtained according to Method A (1 equiv t - $\mathrm{Bu}_{3} \mathrm{P}$) showing complex β as Na -adduct.

Figure S4. HRMS(+) spectrogram of the reaction mixture obtained according to Method A (2 equiv t - $\mathrm{Bu}_{3} \mathrm{P}$) showing complex δ as $[\mathrm{M}-\mathrm{AcO}]^{+}$.

Figure S5. Typical ${ }^{1} \mathrm{H}$-NMR spectrum of the poly(9,9 -di- n-octylfluorene)s obtained by method B.

Figure S6. HRMS(+) spectrogram of the products obtained according to Method B with a $\mathbf{F L} / \mathrm{Pd}(\mathrm{AcO})_{2}$ molar ratio of $2 / 1$.

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (aromatic region) of the polymer isolated from entry 12.

Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (aromatic region) of the polymer isolated from entry 13.

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (aromatic region) of the polymer isolated from entry 14.

Figure S10. GPC traces of the isolated polymers (Table 1 of the manuscript, entries 12-14).

Figure Sni. Number-average molecular weights $\left(\mathrm{M}_{\mathrm{n}}\right)$ vs monomer $/ \mathrm{Pd}(\mathrm{AcO})_{2}$ feed ratio of the isolated polymers (Table 1 of the manuscript, entries 12-14).

