Supporting Information

Synthesis of Well-defined Functionalized Poly(2-(Diisopropylamino)ethyl Methacrylate) Using ATRP with Sodium Dithionite as a SARA Agent

Joana R. Góis,^{*a*} Nuno Rocha,^{*a*} Anatoliy V. Popov,^{*b*} Tamaz Guliashvili,^{*c*} Krzysztof Matyjaszewski,^{*d*} Arménio C. Serra,^{*a*} Jorge F. J. Coelho^{*a**}

^a CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. Fax: +351 239 798 703; Tel:+351 239 798 764; E-mail: jcoelho@eq.uc.pt

^bDepartment of Radiology, University of Pennsylvania, Philadelphia, PA19104, United States.

^cHome Address: 1761 Foster Street, F5B, Philadelphia PA 191116, United States. Email: tamazguliasvili@yahoo.com

^dDepartment of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States. E-mail: km3b@andrew.cmu.edu

Results

Fig. S1 Kinetic plots of DPA conversion and $\ln[M]_0/[M]$ vs time and the plot of number average MW $(M_{n,GPC})$ and dispersity (M_w/M_n) vs conversion for ATRP of DPA in the presence of Cu(II)Br₂/Me₆TREN with Na₂S₂O₄ in two different IPA/water mixtures. Conditions: [DPA]₀/solvent = 1/2 (v/v), [IPA]/[H₂O] = 0.95/0.05 (v/v) or 0.90/0.10 (v/v); [DPA]₀ /[EBiB]₀ /[Na₂S₂O₄]₀ /[CuBr₂]₀ /[Me₆TREN]₀ = 100/1/1/0.1/0.1 (molar); T= 40 °C.

Fig. S2 GPC traces of PEG standard (Mp = 12 000 gmol⁻¹; Mw/Mn = 1.04) and PDPA samples. Conditions: (left) $[DPA]_0$ /solvent = 1/2 (v/v), $[IPA]/[H_2O] = 0.95/0.05$ (v/v); $[DPA]_0$ / $[EBiB]_0$ / $[Na_2S_2O_4]_0$ / $[CuBr_2]_0$ / $[Me_6TREN]_0 = 100/1/1/0.1$ (molar); T= 40°C; (right) $[DPA]_0$ /solvent = 1/2 (v/v), $[IPA]/[H_2O] = 0.90/0.10$ (v/v), $[DPA]_0$ / $[EBiB]_0$ / $[Na_2S_2O_4]_0$ / $[CuBr_2]_0$ / $[Me_6TREN]_0 = 100/1/1$ /0.1/0.1 (molar); T= 40 °C.

Table S1: Details for the various kinetic points in the polymerization of DPA. Conditions $[DPA]_0$ /solvent = 1/2 (v/v), $[IPA]/[H_2O] = 0.95/0.05$ (v/v); $[DPA]_0 / [EBiB]_0 / [Na_2S_2O_4]_0 / [CuBr_2]_0 / [Me_6TREN]_0 = 50/1/1/0.1$ (molar); T= 40°C.

Kinetic	Conv.	M _{n,th}	M _{n.GPC}	M_w/M_w	GPCmain trace			GPC minor trace		
point (h)	(%)	x10 ³	x10 ³		$\begin{array}{c}M_{n,GPC}\\x10^3\end{array}$	M_w/M_w	%	M _{n,GPC} x10 ³	$M_{\rm w}/M_{\rm w}$	%
1	29	3.31	10.12	1.99	16.91	1.03	58.2	8.01	1.09	41.8
2	47	5.15	12.27	1.23	19.72	1.05	82.9	8.06	1.08	17.1
2.5	58	6.38	15.48	1.19	19.77	1.05	87.6	7.73	1.07	12.4
3	67	7.35	16.61	1.18	20.97	1.04	89.5	8.08	1.09	10.5
4	78	8.48	17.99	1.19	22.43	1.04	91.9	8.19	1.10	8.1
5	88	9.57	20.16	1.14	23.60	1.04	93.4	8.84	1.08	6.6

Fig. S3 GPC traces of PEG standard (Mp = 12 000 gmol⁻¹; Mw/Mn = 1.04) and PDPA samples for two synthesized using two different concentrations of copper complex (0.1 and 0.2). Conditions: $[DPA]_0$ /solvent = 1/2 (v/v), $[IPA]/[H_2O] = 0.95/0.05$ (v/v); $[DPA]_0$ / $[EBiB]_0$ / $[Na_2S_2O_4]_0$ / $[CuBr_2]_0$ / $[Me_6TREN]_0 = 20/1/1/0.1/0.1$ (molar) and 20/1/1/0.2/0.2; T= 40°C.

Fig. S4 Kinetic plot of DPA conversion and $ln[M]_0/[M]$ vs time and the plot of number average MW $(M_{n,GPC})$ and dispersity (M_w/M_n) vs conversion for ATRP of DPA in the presence of Cu(II)Br₂/Me₆TREN with Cu(I)Br . Conditions: [DPA]_0/solvent = 1/2 (v/v), [IPA]/[H₂O] = 0.95/0.05 (v/v); [DPA]_0 /[PgBiB]_0 /[CuBr]_0 /[CuBr]_0 /[CuBr]_0 /[CuBr]_0 = 40/1/1/0.1/1.2 (molar); T= 40 °C.