Supporting Information for:

Synthesis of doubly thermo-responsive schizophrenic diblock copolymer based on poly[*N*-(4-vinylbenzyl)-*N*,*N*-diethylamine] and its temperature-sensitive flip-flop micellization

Shentong Li, Fei Huo, Quanlong Li, Chengqiang Gao, Yang Su and Wangqing Zhang*

Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

* To whom correspondence should be addressed. E-mail: wqzhang@nankai.edu.cn, Tel: 86-22-23509794, Fax: 86-22-23503510.

1. The chemical structure of VEA and CDTPA.

Scheme S1. The chemical structure of VEA.

Scheme S2. The chemical structure of CDTPA.

2. The ¹H NMR spectrum of VEA

Fig. S1. The ¹H NMR spectrum of VEA.

3. Synthesis and characterization of PVEA₁₃₃ by RAFT polymerization

Into a Schlenk flask, VEA (1.419 g, 7.5 mmol), CDTPA (12.1 mg, 0.030 mmol), AIBN (1.64 mg, 0.010 mmol) dissolved in 1,4-dioxane (0.50 g) and the internal standard of 1,3,5-trioxane (67.6 mg, 0.75 mmol) were added. The solution was initially degassed with nitrogen at 0 °C for 30 min, and then the flask content was immersed into a preheated oil bath at 70 °C. After 16 h, the reaction was quenched by cooling to 0 °C, and an aliquot was withdrawn to determine the monomer conversion by ¹H NMR analysis. The VEA monomer conversion was calculated according to eq 2. The synthesized polymer was precipitated in the ethanol/water mixture (6/5 by weight) and dried at room temperature under vacuum.

4. The ¹H NMR spectra of PVEA₁₃₃

Fig. S2. The ¹H NMR spectra of $PVEA_{133}$.

5. The GPC traces of PVEA₁₃₃, PtBMA₁₃₆, PtBMA₂₁₇, and PtBMA₃₂₉

Figure S3. The GPC traces of PVEA₁₃₃, PtBMA₁₃₆, PtBMA₂₁₇, and PtBMA₃₂₉.

6. The transmittance versus temperature plots for PVEA₁₃₃, PtBMA₁₃₆, PtBMA₂₁₇, and PtBMA₃₂₉

Fig. S4. The transmittance versus temperature plots for PVEA₁₃₃, P*t*BMA₁₃₆, P*t*BMA₂₁₇, and P*t*BMA₃₂₉.

612 7912 761: 791 127 912 576 926 757 792 764 926 ;795 694: 13361-579 7694 945 33214 795 692: 745279 ;267 569: L7452 1526 921 '45279 267 957! 12795/ '924 795: 5270' 792 579 27952 924 759 1527 275: 752672 '952 597 527 959 895 795: 75497: :489 597 895 925 792 792! 79527! 279 257 792 237(1727 723: 64579: 972 376 727 945 642 794: 791271 .764 457 642 25 °C 40 °C 60 °C

7. High-resolution digital photographs of PtBMA₃₂₉-b-PtBMA₁₄₂ in methanol

Fig. S5. The high-resolution digital photographs of $PtBMA_{329}$ -*b*- $PtBMA_{142}$ in methanol at different temperature, in which the polymer concentration is 2.0 wt%.

8. Polymer concentration affecting LCST/UCST of PtBMA₃₂₉-b-PtBMA₁₄₂ in methanol

Fig. S6. Polymer concentration dependent LCST/UCST of P*t*BMA₃₂₉-*b*-P*t*BMA₁₄₂ in methanol.

9. DLS analysis of the PtBMA₃₂₉-b-PVEA₁₄₂ micelles

Fig. S7. The hydrodynamic diameter distribution $f(D_h)$ of the PtBMA@PVEA micelles formed in methanol at 5 °C (A), and the inverse PVEA@PtBMA micelles formed in methanol at 60 °C (B), with different polymer concentration of PtBMA₃₂₉-*b*-PVEA₁₄₂.

Fig. S8 The transmittance *versus* temperature plots for reference homopolymers of $PtBMA_{329}$ (A) and $PVEA_{133}$ (B) in methanol (CH₃OH) and in deuterated methanol- d_4 (CD₃OD).

10. TEM images of the PtBMA-b-PVEA micelles with different block chain length

Fig. S9. TEM images of the *Pt*BMA@PVEA micelles of *Pt*BMA₂₁₇-*b*-PVEA₈₈ (A1), *Pt*BMA₂₁₇-*b*-PVEA₁₃₆ (A2), *Pt*BMA₂₁₇-*b*-PVEA₁₈₄ (A3), and *Pt*BMA₂₁₇-*b*-PVEA₂₄₄ (A4) formed at 5 °C below the UCST of the *Pt*BMA block and the inverse PVEA@*Pt*BMA micelles of *Pt*BMA₂₁₇-*b*-PVEA₁₃₆ (B1), *Pt*BMA₂₁₇-*b*-PVEA₁₈₄ (B2) and *Pt*BMA₂₁₇-*b*-PVEA₂₄₄ (B3) formed at 60 °C above the LCST of the PVEA block.