Electronic Supporting Information: SARA ATRP or SET-LRP. End of controversy?

Dominik Konkolewicz, Yu Wang, Pawel Krys, Mingjiang Zhong, Abdirisak A. Isse, Armando Gennaro and Krzysztof Matyjaszewski*

Experimental

Materials.

All chemicals were purchased from commercial suppliers, e.g., Aldrich, TCI, Alfa Aesar and used as received, unless otherwise stated. Tris(2-(dimethylamino)ethyl)amine (Me_{6} TREN) was synthesized as reported in the literature. ${ }^{1}$ Oligo(ethylene oxide) monomethyl ether acrylate of molecular weight 480 (OEOA) was passed over a column filled with basic alumina to remove inhibitor prior to use. Metallic copper $\left(\mathrm{Cu}^{0}\right.$, diameter 1 mm$)$ was washed with HCl in methanol and subsequently rinsed with methanol and dried under a stream of nitrogen following literature procedures. ${ }^{2}$

Instrumentation.

Ultraviolet-Visible-Near Infrared Spectroscopy (UV-Vis-NIR): All characterizations were performed using an Agilent 8453 UV-Vis-NIR Spectrometer.

Procedures.

Disproportionation experiment and activation experiment in OEOA/water for Photograph

$\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}(1.4 \mathrm{mg}, 0.0098 \mathrm{mmol})$ was placed into a Schlenk flask, and the flask was sealed with a glass stopper. The flask containing $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ was evacuated and backfilled with nitrogen 4 times. OEOA ($1.08 \mathrm{~g}, 2.25 \mathrm{mmol}$) was added to a second flask, which was sealed with a glass stopper and quickly evacuated in backfilled with nitrogen 4 times. Me ${ }_{6}$ TREN ($13.8 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to the second flask, followed by deoxygenated water (5 mL). The mixture was homogenized by vigorous shaking. 5 mL of this $10 \mathrm{mM} \mathrm{Me}{ }_{6}$ TREN in OEOA/water solution was taken and added with vigorous shaking to the reaction flask containing $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$. The reaction flask
was shaken gently for 20 min . Subsequently, 2-hydroxyethyl α-bromoisobutyrate (HEBiB) (53 $\mathrm{mg}, 0.25 \mathrm{mmol}$) was added, the reaction mixture homogenized. The flask was then shaken for an additional 30 min .

$\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ activation experiment in OEOA/water for Photograph

$\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}(1.4 \mathrm{mg}, 0.0098 \mathrm{mmol})$ was placed into a Schlenk flask, and the flask was sealed with a glass stopper. The flask containing $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ was evacuated and backfilled with nitrogen 4 times. OEOA ($1.08 \mathrm{~g}, 2.25 \mathrm{mmol}$) was added to a second flask, which was sealed with a glass stopper and quickly evacuated in backfilled with nitrogen 4 times. Me_{6} TREN ($13.8 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to the second flask, followed by deoxygenated water (5 mL) and $\mathrm{HEBiB}(63 \mathrm{mg}, 0.30$ $\mathrm{mmol})$. The mixture was homogenized by vigorous shaking. 5 mL of this $10 \mathrm{mM} \mathrm{Me}{ }_{6}$ TREN and 50 mM HEBiB in OEOA/water solution was taken and added with gentle shaking to the flask containing $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$. The reaction flask was shaken continuously for 30 min .

Synthesis of oligo(ethylene oxide) 2-bromopropionate: Oligo(ethylene oxide) monomethyl ether with number-averaged molecular weight $550(6.64 \mathrm{~g}, 0.012 \mathrm{~mol})$ was added to a flask. To this flask, 150 mL of dichloromethane (DCM) and triethylamine ($6.31 \mathrm{~g}, 0.062 \mathrm{~mol}$) were added and the reagents were allowed to combine and cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, 2-bromopropionyl bromide ($11.02 \mathrm{~g}, 0.51 \mathrm{~mol}$) was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , followed by stirring at $22{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was washed 4 times with 100 mL of dilute hydrochloric acid, followed by 4 washes with a dilute sodium carbonate solution. The majority of the DCM was removed under reduced pressure, and the product was added drop wise to diethyl ether, followed by removal of the volatiles and dissolution of the product in a small amount dichloromethane. The product was precipitated into hexanes, and the viscous liquid collected and dried under reduced pressure to give oligo(ethylene oxide) monomethyl ether 2bromopropionate (OEOBrP) $(7.23 \mathrm{~g}, 0.0105 \mathrm{~mol}, 88 \%$ yield $)$. The purity was established to be greater than 96% by NMR.

Disproportionation of $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ in water in the presence of Me_{6} TREN.

$\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}(2.8 \mathrm{mg}, 0.020 \mathrm{mmol})$ was placed into a Schlenk flask equipped with a magnetic stirrer bar and a cuvette. The flask was evacuated and backfilled with nitrogen, and this process was repeated several times. To this flask 0.4 mL of deoxygenated $\mathrm{H}_{2} \mathrm{O}$ was added, followed by
Me_{6} TREN ($4.6 \mathrm{mg}, 0.02 \mathrm{mmol}$). This reaction mixture was stirred for 20 min to allow full disproportionation of Cu^{I} yielding Cu^{0} particles and $\mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{Me}_{6}$ TREN.

Activation of OEOBrP by $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ in water in the presence of Me_{6} TREN.

To a Schlenk flask, OEOBrP ($74.9 \mathrm{mg}, 0.11 \mathrm{mmol}$), OEOA ($0.921 \mathrm{~g}, 1.9 \mathrm{mmol}$) were added. The flask was evacuated and backfilled with nitrogen several times. To this flask 4 mL of deoxygenated water and Me_{6} TREN ($22.5 \mathrm{mg}, 0.098 \mathrm{mmol}$) were added. The resulting solution was bubbled with nitrogen for several minutes. 4.6 mL of the $\mathrm{OEOA} / \mathrm{OEOBrP} / \mathrm{Me}_{6} \mathrm{TREN}$ aqueous solution was taken and added to the flask containing the Cu^{0} and $\mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{Me}_{6}$ TREN formed by disproportionation. The evolution of $\mathrm{Cu}^{\text {II }}$ was monitored by UV-Vis-NIR spectroscopy.

Supporting Data and Information

Measurement of $\mathbf{C u}^{\mathbf{0}}$ surface area formed by disproportionation

The surface area of the Cu^{0} formed by disproportionation was determined by first disproportionating $50 \mathrm{mM} \mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ with Me_{6} TREN in $0.4 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Subsequently, the suspension containing $\mathrm{Cu}^{\mathrm{II}}$ and Cu^{0} was diluted to 5 mL and with $18 \mathrm{wt} \%$ OEOA in water and an excess of alkyl halide. By monitoring the increase in $\mathrm{Cu}^{\mathrm{II}}$, an estimate of the surface area was obtained. However, it is important to note that in this system 20 mM of the alkyl halide OEOBrP was used and only $2-4 \mathrm{mM}$ of $\mathrm{Cu}^{\text {II }}$ is present. Since the rate coefficients of alkyl halide activation by Cu^{0} and comproportionation are comparable ($k_{\mathrm{a} 0}=10 \times 10^{-5} \mathrm{~cm} \mathrm{~s}^{-1}$, and $k_{\text {comp }}=2.4 \times 10^{-5} \mathrm{~cm} \mathrm{~s}^{-1}$), ${ }^{3}$ in this system the alkyl halide activation by Cu^{0} will dominate by a factor of 4 to 1.5 as the reaction occurs. Therefore, especially in the earliest phase of the reaction, the evolution of $\mathrm{Cu}^{\text {II }}$ can be used to determine the rate of alkyl halide activation. The raw evolution of $\mathrm{Cu}^{\mathrm{II}}$ can be seen in Figure S1.

Figure S1. Evolution of $\mathrm{Cu}^{\mathrm{II}}$ in the activation from Cu^{0} powder with 20 mM OEOBrP in $18 \mathrm{wt} \%$ OEOA in water. Conditions: Pre-disproportionation: $\left[\mathrm{Cu}{ }^{\mathrm{I}} \mathrm{Br}\right]_{0}=50 \mathrm{mM},\left[\mathrm{Me}_{6} \mathrm{TREN}\right]_{0}=50 \mathrm{mM}$ in 0.4 mL of $\mathrm{H}_{2} \mathrm{O}$. Conditions activation, dilution of 0.4 mL with $\mathrm{OEOA} / \mathrm{OEOBrP}$ and $\mathrm{H}_{2} \mathrm{O}$. Final conditions $\left[\mathrm{Me}_{6} \mathrm{TREN}\right]_{0}=20 \mathrm{mM},[\mathrm{OEOBrP}]_{0}=20 \mathrm{mM},\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{Me}_{6} \mathrm{TREN}\right]_{0}=2 \mathrm{mM}$.

To extract the surface area of the Cu^{0}, the system can be modeled as:
$\frac{\mathrm{d}\left[\mathrm{Cu}^{\text {II }}\right]}{\mathrm{d} t}=k_{\mathrm{a} 0} \frac{S}{V}[\mathrm{OEOBrP}]$
Although the $\mathrm{Cu}^{\text {II }}$ concentration is measured by UV-Vis-NIR spectrometry, it is easier to solve the problem in terms of the conversion of Cu^{0} powder to $\mathrm{Cu}^{\mathrm{II}}$ in solution. In this case, by the stoichiometry of both disproportionation and activation by Cu^{0},
$\left[\mathrm{Cu}^{\mathrm{II}}\right]=\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}+\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}$ conv

This is due to the essentially complete disproportionation in water, leading to half the initially added Cu forming Cu^{0} and the other half forming $\mathrm{Cu}^{\mathrm{II}}$. Therefore, as the Cu^{0} activates alkyl halides the concentration of $\mathrm{Cu}^{\mathrm{II}}$ goes from $\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}$, which is the $\left[\mathrm{Cu}^{\mathrm{II}}\right]$ upon the addition of the alkyl halides, to $2\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}$

Assuming spherical symmetry as the "nascent" Cu^{0} is consumed its surface area goes down as $\operatorname{conv}^{2 / 3}$ where conv again refers to the conversion of the Cu^{0} particles to $\mathrm{Cu}^{\mathrm{II}}$. Therefore this can be rewritten as

$$
\begin{equation*}
\frac{\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0} \mathrm{~d} \text { con } v}{\mathrm{~d} t}=k_{\mathrm{a} 0} \frac{S_{0}}{V}(c o n v)^{2 / 3}[\mathrm{OEOBrP}] \tag{S3}
\end{equation*}
$$

Although OEOBrP is in a significant molar excess over Cu^{0}, there is still a depletion of OEOBrP over the reaction. In fact since one activation by Cu^{0} removes two alkyl halides, since the
generated Cu^{I} will also activate an alkyl halide. The stoichiometry of the reaction dictates that the OEOBrP concentration is given by:
$[\mathrm{OEOBrP}]=[\mathrm{OEOBrP}]_{0}\left(1-\frac{4}{5}\right.$ conv $)$

This gives the following separable differential equation:
$\frac{\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0} \mathrm{~d} \operatorname{con} v}{\mathrm{~d} t}=k_{\mathrm{a} 0} \frac{S_{0}}{V}[\mathrm{OEOBrP}]_{0}(\text { conv })^{2 / 3}\left(1-\frac{4}{5}\right.$ conv $)$

Finally, this gives the following solution,
$g($ conv $)=k_{\mathrm{a} 0} \frac{S_{0}}{V} \frac{[\mathrm{OEOBrP}]_{0}}{\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}} t$
where,
$g($ conv $)=\int_{0}^{\text {conv }} \frac{d c}{(c)^{2 / 3}\left(1-\frac{4}{5} c\right)}$
Therefore, plotting $g(c o n v)$ against time should be linear with slope:
slope $=k_{\mathrm{a} 0} \frac{S_{0}}{V} \frac{[\mathrm{OEOBrP}]_{0}}{\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}}$
As can be seen in Figure S2, the plot of g (conv) against time is indeed linear, up to rather high conversion of Cu^{0} to $\mathrm{Cu}^{\mathrm{II}}$. The slope of the plot of $\mathrm{g}($ conv $)$ against time is slope $=2.7 \times 10^{-3} \mathrm{~s}^{-1}$. Substituting the known $k_{\mathrm{a} 0}=1.0 \times 10^{-5} \mathrm{~cm} \mathrm{~s}^{-1}, V=5 \mathrm{~cm}^{3}$, and $[\mathrm{OEOBrP}]_{0} /\left[\mathrm{Cu}^{\mathrm{II}}\right]_{0}=10$, gives S_{0} $=130 \mathrm{~cm}^{2}$. This surface area was for 2.8 mg of $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ that underwent disproportionation. By mass balance, complete disproportionation of 2.8 mg of $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ gives 0.64 mg of Cu^{0}, since only half of the Cu forms Cu^{0}. Therefore, a surface area of $130 \mathrm{~cm}^{2}$ for $0.64 \mathrm{mg} \mathrm{Cu}^{0}$ gives a specific surface area of approximately $20 \mathrm{~m}^{2} / \mathrm{g}$ of Cu^{0}. This calculation also implies that the surface area generated by disproportionation is $46 \mathrm{~cm}^{2}$ for every 1 mg of $\mathrm{Cu}^{\mathrm{I}} \mathrm{Br}$ disproportionated.

Figure S2. Plot of $g(c o n v)$ vs. time, as well as a linear fit to the $g(c o n v)$ data. The function fitted to the data is $g($ conv $)=2.7 \times 10^{-3} t-8.3 \times 10^{-3}$.

Simulations

All simulations were performed using the PREDICI® program (version 6.3.2) using the methods previously described in the literature. ${ }^{3,4}$ In both models R-X and R' represent small molecule initiators and radicals, while $\mathrm{P}_{\mathrm{n}}-\mathrm{X}$ and $\mathrm{P}_{\mathrm{n}}{ }^{\circ}$ represent polymeric dormant chains and radicals, respectively. For heterogeneous reactions, for convenience, overall rate coefficients, defined as $k^{\text {over }}=k^{\text {app }} \times S / V$ were used, as outlined in earlier work. ${ }^{4}$ In aqueous system model, dissociation of halide from $\mathrm{Cu}^{\mathrm{II}} \mathrm{X} / \mathrm{L}$ and $\mathrm{Cu}^{\mathrm{I}} \mathrm{X} / \mathrm{L}$ complexes is taken into account. The importance of this reaction in aqueous media has been shown in previous work. ${ }^{3}$

Simulations of lifting experiments were performed with assumption that the surface area of Cu^{0} remaining in the reaction mixture after removal of wire is approximately 1% of the original surface area of the wire, based on the 10 fold polymerization rate reduction. Therefore, the rates of comproportionation, disproportionation, activation by Cu^{0}, and deactivation by Cu^{I} were 100 times slower when the wire was lifted out of the solution.

Typical polymerization model in DMSO solvent, including Cu^{I} and Cu^{0} induced radical loss, employed for lifting experiments is presented in the scheme S 1 . Rate coefficients used in the model experiments are presented in table S1.

Scheme S1. Kinetic model for RDRP in DMSO in the presence of Cu^{0} used in simulations

$$
\begin{aligned}
& \mathrm{Cu}^{0}+\mathrm{Cu}^{\prime \prime} \mathrm{X}_{2} / \mathrm{L}+\mathrm{L} \underset{\underset{\text { disp }}{\text { app }}}{k_{\text {comp }}^{\text {app }}} \text { Cu' }^{\prime} \mathrm{X} / \mathrm{L}+\mathrm{Cu}^{\prime} \mathrm{X} / \mathrm{L} \\
& \mathbf{R}^{\boldsymbol{\bullet}}+\mathbf{M} \xrightarrow{\boldsymbol{k}_{\text {add }}} \mathrm{P}_{\mathbf{i}} \\
& \mathrm{P}_{\mathrm{n}}^{\cdot}+\mathrm{M} \xrightarrow{k_{\mathrm{p}}} \mathrm{P}_{\mathrm{n}+1}^{\cdot} \\
& \mathbf{R}^{\boldsymbol{\bullet}}+\mathbf{R}^{\boldsymbol{\bullet}} \xrightarrow{\boldsymbol{k}_{\mathrm{to}}} \mathbf{R} \mathbf{- R} \\
& P_{n}^{\bullet}+P_{m}^{\bullet} \xrightarrow{k_{t}} P_{n}-P_{m} \text { or } P_{n} H+P_{m}=R^{\bullet}+P_{n}^{\bullet} \xrightarrow{k_{t R}} R-P_{n} \\
& \mathrm{P}_{\mathrm{n}}^{\cdot}+\mathrm{P}_{\mathrm{m}}^{+} \xrightarrow[\mathrm{Cu}^{0}]{k_{\mathrm{t}, \mathrm{Cu}(0)}} \mathrm{P}_{\mathrm{n}}-\mathrm{P}_{\mathrm{m}} \text { or } \mathrm{P}_{\mathrm{n}} \mathrm{H}+\mathrm{P}_{\mathrm{m}}= \\
& P_{n}^{\cdot}+P_{m}^{\cdot} \xrightarrow[\mathrm{Cu}^{\prime}]{k_{\mathrm{t}, \mathrm{Cu}}(\mathrm{l}} \mathrm{P}_{\mathrm{n}}-\mathrm{P}_{\mathrm{m}} \text { or } \mathrm{P}_{\mathrm{n}} \mathrm{H}+\mathrm{P}_{\mathrm{m}}=
\end{aligned}
$$

Table S1. Rate coefficients for RDRP in DMSO in the presence of Cu^{0}

Rate coefficient a	k or k^{app}	Reference
$k_{\mathrm{a} 0}$	$1.0 \times 10^{-4} \mathrm{~cm} \mathrm{~s}^{-1}$	5
$k_{\mathrm{d} 0}$	$1.2 \times 10^{-1} \mathrm{~cm} \mathrm{~s}^{-1}$	4
$k_{\text {comp }}$	$3.5 \times 10^{-3} \mathrm{~cm} \mathrm{~s}^{-1}$	2
k_{disp}	$3.1 \times 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$	2
$k_{\mathrm{a} 1}$	$2.0 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	4
$k_{\mathrm{d} 1}$	$2.7 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	4,6
k_{p}	$15600 \mathrm{M}^{-1} \mathrm{~s}^{-1}$	7
k_{add}	$5.8 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	8

$k_{\mathrm{t}}{ }^{b, c}$	$1.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	9
$k_{\mathrm{t}, \mathrm{Cu}(0)}{ }^{b, c}$	$1.4 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	4
$k_{\mathrm{t}, \mathrm{Cu}(\mathrm{I})}{ }^{b, c}$	$4.4 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	10
$k_{\mathrm{tR}}{ }^{d}$	$1.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	7,9
$k_{\mathrm{t} 0}$	$2.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	11

${ }^{b}$ During the presence of Cu^{0} wire in the reaction mixture $k_{\mathrm{t}, \mathrm{Cu}(0)}$ was used. While Cu^{0} was lifted, the effect of remaining Cu^{0} on termination was k_{t} and $k_{\mathrm{t}, \mathrm{Cu}(\mathrm{I})}$ were used.
${ }^{c} k_{\mathrm{t}}=k_{\mathrm{tc}}+k_{\mathrm{td}}$, where k_{tc} and k_{td} are combination and disproportionation termination rate coefficients respectively. It was assumed, that conventional termination occurs exclusively by combination of macroradicals, while Cu^{0} induced termination occurs by disproportionation ${ }^{d}$ It was also assumed that $k_{\mathrm{tR}} \approx k_{\mathrm{t}}$.

Simulations of pre-disproportionation experiments were performed starting after predisproportionation stage, when monomer and initiator mixture is injected into predisproportionated mixture. Surface area of Cu^{0} generated via disproportionation was calculated based on conducted pre-disproportionation experiment, where $\mathrm{Cu}^{\mathrm{I}} / \mathrm{Me}_{6}$ TREN is allowed to fully disproportionate, followed by activation of generated Cu^{0} by alkyl halide, for which activation rate constant is known, and measuring $\mathrm{Cu}^{\mathrm{II}}$ concentration spectrophotometrically as highlighted in Figure S1-S2.

Typical polymerization model in $\mathrm{H}_{2} \mathrm{O}$, employed for pre-disproportionation experiments is presented in the scheme S 2 . Rate coefficients used in the model experiments are presented in table S2. For convenience, overall rate coefficients, defined as $k^{\text {over }}=k^{\text {app }} \times S / V$ were used, as outlined in earlier work. ${ }^{4}$ Values of disproportionation and comproportionation rate constants are based on the overall rate coefficients determined experimentally rather than on specific speciation.

Scheme S2. Kinetic model for RDRP in $\mathrm{H}_{2} \mathrm{O}$ in the presence of Cu^{0} used in simulations

$$
\begin{aligned}
& \mathrm{Cu}^{0}+\mathrm{Cu}^{\prime \prime} \mathrm{XIL}^{+}+\mathrm{L} \xrightarrow[\text { comp }]{\text { app }} \mathrm{Cu}^{\prime} \mathrm{XIL}+\mathrm{Cu}^{\prime} / \mathrm{L}^{+} \\
& \mathrm{Cu}^{0}+\mathrm{Cu}^{\prime \prime} / \mathrm{L}^{++}+\mathrm{L} \xrightarrow{k_{\text {comp }}^{\text {app }}} \mathrm{Cu}^{1} / \mathrm{L}^{+}+\mathrm{Cu}^{\prime} / \mathrm{L}^{+} \\
& \mathrm{Cu}^{\prime} \mathrm{XIL}+\mathrm{Cu}^{\prime} \mathrm{XIL} \xrightarrow{k_{\text {disp }}^{\text {app }}} \mathrm{Cu}^{0}+\mathrm{Cu}^{\prime \prime} \mathrm{XIL}^{+}+\mathrm{X}^{-}+\mathrm{L} \\
& \mathrm{Cu}^{\prime} / \mathrm{L}^{+}+\mathrm{Cu}^{\prime} / \mathrm{L}^{+} \xrightarrow{k_{\text {disp }}^{\text {app }}} \mathrm{Cu}^{0}+\mathrm{Cu}^{11} / \mathrm{L}^{++}+\mathrm{L} \\
& \mathrm{Cu}^{\prime} \mathrm{X} / \mathrm{L}+\mathrm{Cu}^{\prime} / \mathrm{L}^{+} \xrightarrow{k_{\text {disp }, \text { cross }}^{\text {app }}} \mathrm{Cu}^{0}+\mathrm{Cu}^{\prime \prime} \mathrm{XI}^{+}+\mathrm{L} \\
& \mathrm{R}^{\boldsymbol{+}} \mathrm{M} \xrightarrow{\boldsymbol{k}_{\text {add }}} \mathrm{P}_{\mathbf{1}}{ }^{-} \\
& \mathrm{P}_{\mathrm{n}}{ }^{+}+\mathrm{M} \xrightarrow{k_{\mathrm{p}}} \mathrm{P}_{\mathrm{n}+1}{ }^{-} \\
& \mathbf{R}^{\cdot}+\mathbf{R}^{\cdot} \xrightarrow{k_{\mathrm{t} 0}} \mathrm{R}-\mathrm{R} \\
& P_{\mathrm{n}}^{\cdot}+\mathrm{R}^{\cdot} \xrightarrow[k_{\mathrm{tc}}]{k_{\mathrm{tR}}} \mathrm{P}_{\mathrm{n}}-\mathrm{R} \\
& \begin{array}{ll}
\mathrm{Cu}^{\prime} / \mathrm{L}^{+}+\mathrm{X}^{-} \xlongequal{K_{\mathrm{Br}}^{\prime}} \mathrm{Cu}^{\prime} \mathrm{XIL} & \mathrm{Cu}^{\prime} / \mathrm{L}^{+}+\mathrm{X}^{-} \xlongequal{k_{\mathrm{dis}}} \mathrm{~K}_{\mathrm{as}} \\
\mathrm{Cu}^{\prime} \mathrm{X} / \mathrm{L} \\
\mathrm{Cu}^{\prime \prime} / \mathrm{L}^{++}+\mathrm{X}^{-} \stackrel{K_{\mathrm{Br}}^{\mathrm{II}}}{\rightleftharpoons} \mathrm{Cu}^{\prime \prime} \mathrm{XIL}^{+} & \mathrm{Cu}^{\prime \prime} / \mathrm{L}^{++}+\mathrm{X}^{-} \xlongequal[k_{\text {dis }}]{k_{\mathrm{as}}} \mathrm{Cu}^{\mathrm{II} \mathrm{XIL}^{+}}
\end{array}
\end{aligned}
$$

Table S2. Rate coefficients for RDRP in $\mathrm{H}_{2} \mathrm{O}$ in the presence of Cu^{0}

Rate coefficient a	k or $k^{\text {app }}$	Reference
$k_{\mathrm{a} 0}$	$5 \times 10^{-6} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\mathrm{a} 0 \mathrm{i}}$	$5.6 \times 10^{-5} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\mathrm{d} 0}$	$8 \times 10^{-2} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\mathrm{d} 0 \mathrm{i}}$	$8 \times 10^{-3} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\text {comp }}$	$2.4 \times 10^{-5} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\text {disp }}$	$5 \times 10^{-4} \mathrm{~cm} \mathrm{~s}^{-1}$	3

$k_{\text {disp,cross }}$	$10^{-3} \mathrm{~cm} \mathrm{~s}^{-1}$	3
$k_{\mathrm{a} 1}$	$2.5 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
k_{ali}	$2.9 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
$k_{\mathrm{d} 1}$	$2 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
k_{dli}	$2 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
k_{p}^{b}	$1.73 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	12
k_{add}	$1.1 \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	8
k_{tc}^{b}	$1 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	9
k_{td}	$0 \mathrm{M}^{-1} \mathrm{~s}^{-1}$	13
k_{tR}	$5 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
$k_{\mathrm{t} 0}$	$2.7 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	3
k_{as}	$1.4 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	this work
k_{dis}	$1.0 \times 10^{4} \mathrm{~s}^{-1}$	this work
Equilibrium const.	K^{2}	Reference
$K_{\mathrm{Br}}^{\mathrm{I}}$	$14 \mathrm{M}^{-1}$	3
$K_{\mathrm{Br}}^{\mathrm{II}}$	$14 \mathrm{M}^{-1}$	3

${ }^{a} \mathrm{~L}=\mathrm{Me}_{6}$ TREN, $\overline{\mathrm{X}}=\mathrm{Br}$, R-X $=\mathrm{HEBiB}$, reaction medium is $18 \mathrm{wt} \%$ OEOA in $\mathrm{H}_{2} \mathrm{O}$.
${ }^{b}$ Value for Dodecyl Acrylate

Halide association/dissociation dynamics

In order to evaluate the effect of dynamics of halide association/dissociation on the polymerization a series of simulations were performed under following conditions: OEOA/ $\mathrm{H}_{2} \mathrm{O}$ $=18 / 82(\mathrm{wt} / \mathrm{wt}),[\mathrm{OEOA}]_{0}:[\mathrm{HEBiB}]_{0}:\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2}\right]_{0}:\left[\mathrm{Me}_{6} \mathrm{TREN}\right]_{0}=100: 1: 0.01: 0.2,[\mathrm{OEOA}]_{0}=0.41$ $\mathrm{M}, 10 \mathrm{~cm}$ of Cu^{0} wire $(d=1 \mathrm{~mm})$ in $V=6 \mathrm{~mL}$ with 0 mM or 30 mM of NaBr added at $22{ }^{\circ} \mathrm{C}$. The simulations were based on the model outlined in Scheme S2 and Table S2, with variable halide association and dissociation rate constants, while maintaining $K_{B r}^{\mathrm{II}}=14 \mathrm{M}^{-1}$. The outcome of polymerizations (Fig. S3 a, b, c) does not change if dynamics of halide association/dissociation is sufficiently fast and thus appropriate values of $k_{\mathrm{as}}=1.4 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{\text {dis }}=1.0 \times 10^{4} \mathrm{~s}^{-1}$ were used in simulations. Identical plots were obtained using larger values of $k_{\text {as }}$ and $k_{\text {dis }}$.

Figure S3. Simulation of OEOA polymerization under the conditions: $[\mathrm{OEOA}]_{0}:[\mathrm{HEBiB}]_{0}:\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2}\right]_{0}:\left[\mathrm{Me}_{6} \mathrm{TREN}_{0}=20: 1: 0.2: 0.4,18 \mathrm{wt} \%\right.$ OEOA in H2O. $V=6 \mathrm{~mL}, S$ $=250 \mathrm{~cm}^{2}$, ca. $10000 \mathrm{ppm} \mathrm{Cu}{ }^{\text {II }}$ at the beginning. (a) gives the DP and $M_{\mathrm{w}} / M_{\mathrm{n}}$, (b) gives the concentrations of all species in solution and (c) gives the rates of reaction.

References

1. Britovsek, G. J. P.; England, J.; White, A. J. P. Inorg. Chem. 2005, 44, 8125-8134.
2. Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.-H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Macromolecules 2013, 46, 3793-3802.
3. Konkolewicz, D.; Krys, P.; Góis, J. R.; Mendonça, P. V.; Zhong, M.; Wang, Y.; Gennaro, A.; Isse, A. A.; Fantin, M.; Matyjaszewski, K. Macromolecules 2014, DOI: 10.1021/ma4022983.
4. Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K. Macromolecules 2013, 46, 3816-3827.
5. Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P.; Konkolewicz, D.; Gennaro, A.; Matyjaszewski, K. Macromolecules 2013, 46, 3803-3815.
6. Wang, Y.; Kwak, Y.; Buback, J.; Buback, M.; Matyjaszewski, K. ACS Macro Lett. 2012, 1367-1370.
7. Buback, M.; Egorov, M.; Gilbert, R. G.; Kaminsky, V.; Olaj, O. F.; Russell, G. T.; Vana, P.; Zifferer, G. Macromol. Chem. Phys. 2002, 203, 2570-2582.
8. Fischer, H.; Radom, L. Angew. Chem.-Int. Edit. 2001, 40, 1340-1371.
9. Buback, M.; Kuelpmann, A.; Kurz, C. Macromol. Chem. Phys. 2002, 203, 1065-1070.
10. Wang, Y.; Soerensen, N.; Zhong, M.; Schroeder, H.; Buback, M.; Matyjaszewski, K. Macromolecules 2013, 46, 683-691.
11. Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K. Macromolecules 2009, 42, 6348-6360.
12. Buback, M.; Kurz, C. H.; Schmaltz, C. Macromol. Chem. Phys. 1998, 199, 1721-1727.
13. Moad, G.; Solomon, D. H., The chemistry of free radical polymerization. 2nd Ed. ed.; Elsevier: Amsterdam, 2006.
