Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Cyclic and Spirocyclic Polyacetal Ethers from Lignin-Based Aromatics

Alexander G. Pemba, Mayra Rostagno, Tanner A. Lee and Stephen A. Miller*

The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida Gainesville, Florida 32611-7200, USA

Electronic Supplementary Information (ESI)

Supplementary Information Available: Complete polymer characterization data.

Table of Contents

Summary of Polymerization Data	S2
Gel Permeation Chromatography (GPC) Analysis	S 3
Differential Scanning Calorimetry (DSC) Thermograms	S10
Thermogravimetric Analysis (TGA) Thermograms	S14
¹ H NMR Spectra	S18
¹³ C NMR Spectra	S22
Fourier Transform Infrared Spectroscopy (FTIR) Spectra	S26
Degradation Studies via Dynamic Light Scattering (DLS)	S28

Summary of Polymerization Data

Entry	Polymer	Yield (%)	M _w (Da)	M _n (Da)	PDI	Т _g (°С)	<i>T</i> _m (°C)	T_{95} (°C) ^d	Residue $(\%)^d$
1 ^{<i>b</i>} P-BB	$+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	81	с	С	С	<i>n.o.</i>	n.o.	328	20
2 P-VV	$+ \\ \times \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	90	23,700	10,600	2.2	129	<i>n.o</i> .	308	19
3 P-SS	$+ \\ \\ \times \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ $	90	36,000	18,600	1.9	152	<i>n.o.</i>	307	17
4 P-EE	$+ \\ \\ + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	83	47,800	18,500	2.6	108	n.o.	326	23
5 D-BB	$+ ^{\circ} \times ^{\circ} $	81	3,500	2,600 ^e	1.4	<i>n.o.</i>	259	349	8.3
6 D-VV	$+ \sqrt[6]{-} \sqrt[$	90	44,200	22,200	2.0	80	n.o.	327	8.2
7 D-SS	$+ \sqrt[6]{-} \sqrt[$	90	34,600	21,600	1.6	98	n.o.	320	12
8 D-EE	$+(^{\circ})^{\circ})^{\circ})^{\circ}$	83	42,100	19,300	2.2	68	n.o.	333	10

Table S1. Thermal and molecular weight data for spirocyclic (1-4) and cyclic (5-8) polyacetal ethers.^a

^{*a*}Polymerization conducted in refluxing methylene chloride at 40 °C, except as noted. Molecular weight data obtained by GPC in hexafluoroisopropanol (HFIP) solvent. For DSC data, *n.o.* indicates a thermal transition not observed. ^{*b*}Polymerization conducted in refluxing 1,1,2,2-tetrachloroethane at 146 °C. ^{*c*}Although insolubility prevented GPC analysis for **P-BB**, ¹H NMR spectroscopy confirmed the absence of aldehydic hydrogens characteristic of the monomer. ^{*d*}Thermogravimetric analysis conducted under nitrogen; temperature reported upon 5% mass loss; residue (%) reported at end of TGA experiment. ^{*e*}Acidity of HFIP degraded the sample before GPC analysis of **D-BB**. Nonetheless, ¹H NMR spectroscopy confirmed the absence of aldehydic hydrogens characteristic of the monomer.

Gel Permeation Chromatography (GPC) Analysis (in hexafluoroisopropanol, HFIP)

Peak	Mp	Mn	Mw	Mz	Mz+1	M∨	PD
Peak 1	22636	10601	23713	35982	49249	34180	2.237
		•					
Peak informati	on						

	Start (mins	5)	End (mir	ıs)		
Baseline region 1		21.79		24.79		
Baseline region 2		52.23		55.23		
Peak 1		30.00		39.47		
Peak	Trace	Peak N	lax RT (mins)	Peak A	rea (mV.s)	Peak Height (mV)
Peak 1	RI		33.96		8261878.103	36693.014

Figure S1. GPC Chromatogram of P-VV (Table S1, entry 2).

Molecular Weig	ght Averages						
Peak	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
Peak 1	34555	18579	36007	55512	80338	52399	1.938

	Start (mins)	End (mins)
Baseline region 1	19.68	25.37
Baseline region 2	45.55	48.58
Peak 1	28.84	38.43

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	33.02	9732799.980	44984.223

Figure S2. GPC Chromatogram of P-SS (Table S1, entry 3).

Nolecular Weight Averages							
Peak	Мр	Mn	Mw	Mz	Mz+1	Мv	PD
Peak 1	40901	18469	47786	85802	141919	79217	2.587

	Start (mins)	End (mins)
Baseline region 1	22.74	25.24
Baseline region 2	45.48	46.22
Peak 1	28.55	39.25

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	32.66	8054002.391	31880.956

Molecular Weight Averages

Peak	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
Peak 1	2555	2569	3504	4763	6111	4567	1.364

Peak information

	Start (mins)	End (mins)	
Baseline region 1	21.24	24.24	
Baseline region 2	52.68	55.68	
Peak 1	34.85	38.62	
Deals	Turner Deals	Man DT (mina) Deals As	

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	37.66	239429.903	1979.690

Figure S4. GPC Chromatogram of D-BB (Table S1, entry 5).

Molecular	Weight	Averages
molecular	reight	Averages

inclosular troight troidges							
Peak	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
Peak 1	34713	22246	44198	78090	129686	72046	1.987

	Start (mins)	End (mins)
Baseline region 1	20.42	23.42
Baseline region 2	55.70	58.70
Peak 1	28.67	37.65
	•	

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	33.02	13751703.772	56737.240

Figure S5. GPC Chromatogram of D-VV (Table S1, entry 6).

Molecular Weight Averages							
Peak	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
Peak 1	28989	21590	34623	50968	71673	48305	1.604

	Start (mins)	End (mins)
Baseline region 1	22.28	25.28
Baseline region 2	52.43	55.43
Peak 1	29.41	37.43

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	33.41	10001500.829	47844.869

Molecular W	eight /	Averages
-------------	---------	----------

Peak	Мр	Mn	Mw	Mz	Mz+1	Μv	PD
Peak 1	36337	19263	42066	75095	124241	69396	2.184

	Start (mins)	End (mins)
Baseline region 1	21.79	24.79
Baseline region 2	55.31	58.31
Peak 1	28.46	37.85

Peak	Trace	Peak Max RT (mins)	Peak Area (mV.s)	Peak Height (mV)
Peak 1	RI	32.91	7522303.056	28981.610

Figure S7. GPC Chromatogram of D-EE (Table S1, entry 8).

Differential Scanning Calorimetry (DSC) Thermograms

Figure S8. DSC Thermogram of P-BB (Table S1, entry 1).

Figure S10. DSC Thermogram of P-SS (Table S1, entry 3).

Figure S11. DSC Thermogram of P-EE (Table S1, entry 4).

Figure S12. DSC Thermogram of D-BB (Table S1, entry 5).

Figure S13. DSC Thermogram of D-VV (Table S1, entry 6).

Figure S14. DSC Thermogram of D-SS (Table S1, entry 7).

Figure S15. DSC Thermogram of D-EE (Table S1, entry 8).

Thermogravimetric Analysis (TGA) Thermograms

Figure S16. TGA Thermogram of P-BB (Table S1, entry 1).

Figure S17. TGA Thermogram of P-VV (Table S1, entry 2).

Figure S18. TGA Thermogram of P-SS (Table S1, entry 3).

Figure S19. TGA Thermogram of P-EE (Table S1, entry 4).

Figure S20. TGA Thermogram of D-BB (Table S1, entry 5).

Figure S21. TGA Thermogram of D-VV(Table S1, entry 6).

Figure S22. TGA Thermogram of D-SS (Table S1, entry 7).

Figure S23. TGA Thermogram of D-EE (Table S1, entry 8).

Figure S24. ¹H NMR spectra of **BB** (top, red trace) and **D-BB** (black, bottom trace) in TCE- d_2 . Absence of the aldehydic proton (ca. 10 ppm) in the **D-BB** trace suggests that the monomer (**BB**) has been completely consumed and has been converted to high molecular weight polymer.

Figure S25. ¹H NMR spectrum of **P-VV** in DMSO- d_6 (Table S1, entry 2).

Figure S26. ¹H NMR spectrum of P-SS in DMSO- d_6 (Table S1, entry 3).

Figure S27. ¹H NMR spectrum of **P-EE** in DMSO- d_6 (Table S1, entry 4).

Figure S28. ¹H NMR spectrum of **D-BB** in TCE- d_2 (Table S1, entry 5).

Figure S29. ¹H NMR spectrum of D-VV in TCE- d_2 (Table S1, entry 6).

¹³C NMR Spectra

Figure S32. ¹³C NMR spectrum of P-VV in DMSO- d_6 (Table S1, entry 2).

Figure S33. ¹³C NMR spectrum of **P-SS** in DMSO- d_6 (Table S1, entry 3).

Figure S35. ¹³C NMR spectrum of **D-BB** in TCE- d_2 (Table S1, entry 5).

Figure S36. ¹³C NMR spectrum of **D-VV** in TCE- d_2 (Table S1, entry 6).

Figure S37. ¹³C NMR spectrum of **D-SS** in TCE- d_2 (Table S1, entry 7).

Figure S39. Comparative FTIR spectra for BB (monomer), P-BB, and D-BB.

Figure S40. Comparative FTIR spectra for BB (monomer), P-BB, and D-BB for carbonyl area (magnified), showing no carbonyl peak in either polymer.

Figure S41. Comparative FTIR spectra for VV (monomer), P-VV, and D-VV.

Figure S42. Comparative FTIR spectra for SS (monomer), P-SS, and D-SS.

Figure S43. Comparative FTIR spectra for EE (monomer), P-EE, and D-EE.

Degradation Studies via Dynamic Light Scattering (DLS)

Figure S44. Degradation studies of P-VV / DMSO solution with 0.5% aqueous concentrated HCl.

Figure S45. Degradation studies of P-VV / DMSO solution with 0.5% 2M aqueous HCl.

Figure S46. Degradation studies of D-VV / DMSO solution with 0.5% aqueous concentrated HCl.

Figure S47. Degradation studies of D-VV / DMSO solution with 0.5% 2M aqueous HCl.