Is methanol really a bad solvent for poly(*n*-butyl methacrylate)? Low dispersity and high molecular weight polymers of *n*-butyl methacrylate synthesised via ATRP in anhydrous methanol.

A.B. Dwyer,^a P. Chambon,^a A. Town,^a T. He,^b A. Owen^c and S.P.Rannard^{a*}

^{*a*} Department of Chemistry, University of Liverpool, Crown Street, Liverpol, L69 7ZD, UK. E-mail: <u>srannard@liv.ac.uk</u>

^b Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore, 627833

^c Department of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool, L69 3GF, UK.

Supplementary Information

Figure S1: Studies of p(nBuMA) solubility in MeOH-d₄. ¹H NMR spectra of i) p(nBuMA) heated to 60 °C, ii) p(nBuMA) after heating and cooling to 25 °C. In ii) the intensity of the peaks owing to residual polymer in solution has been considerably increased in order to allow comparison with i).

Figure S2: Cloud Point behaviour for p(nBuMA) in MeOH with varying water content within the organic solvent. The reagent grade methanol was reported by the supplier to contain < 0.05 % H₂O content. Asymmetric error bars shown.

	Anhydrous <u>MeOH</u> Cloud Point Temperature (°C)			Ana MeOH	lytical Gr [(<0.05%	ade H2O)	Anhydrous MeOH+H ₂ 0 (1wt %) Cloud Point Temperature (°C)		
·				C Tem	loud Poin perature (t (°C)			
Composition (wt %)	#1	#2	#3	#1	#2	#3	#1	#2	#3
0.5	47.6	47.5	47.5	47.7	47.5	47.4	52.1	52.2	52.1
1	52.8	52.9	52.9	53.1	53.1	53.2	58.3	58.2	58.4
1.5	56.1	56.0	56.0	56.7	56.4	56.5	62.1	62.1	62.0
2	57.9	57.7	58.0	58.1	58.3	58.1	63.8	63.7	63.7
2.5	59.6	59.7	59.8	59.9	59.6	59.8			
3	61.2	61.4	61.4	61.8	61.8	61.7			
3.5	62.1	62.0	61.9	62.7	62.5	62.5			
4	62.9	62.9	62.8	63.9	63.8	63.7			
4.5	64.0	64.0	63.9	64.1	64.2	64.1			

Table S1: Cloud point temperatures for p(nBuMA) in MeOH with varying water content within the organic solvent. Measurements recorded in triplicate for each composition.

Figure S3: Expanded photographs of the polymerisation showing i) the strong dark brown catalyst complex during polymerisation, ii) the homogeneous polymerisation at 60 °C after oxygen was allowed into the reaction, and iii) precipitation of p(nBuMA) during cooling (57 °C).

Figure S4: Cloud point measurement of $p(nBuMA)_x$ in anhydrous MeOH with increasing concentrations of n(BuMA) monomer.

Table	S2:	Cloud	point	temperatures	for	$p(nBuMA)_x$	in	anhydrous	MeOH	(50	wt%
compos	sition) with ii	ncreasi	ng concentration	ons o	of n(BuMA) n	non	omer.			

	Cloud Point Temperature (°C)						
Monomer Addition (µL)	p(nBuMA) ₆₀	<i>p</i> (<i>n</i> BuMA) ₂₀₀	<i>p</i> (<i>n</i> BuMA) ₃₀₀				
50	53.6	61.3	insoluble				
60	51.5						
70	49.3						
80	47.0						
90	44.9						
100	43.0	54.5	56.9				
110	40.8						
120	39.1						
130	37.0						
140	35.4						
150	33.4	45.2	47.6				
160	31.7						
170	30.9						
180	28.8						
190	27.2						
210	24.4						

over 18 samples of $p(nBuMA)$ analysed via THF GPC.					
Target DP _n	dn/dc				
60	0.0809				
80	0.0786				
100	0.0848				
100	0.0712				
150	0.0787				
200	0.0763				
300	0.076				
400	0.0772				
500	0.0865				
1000	0.0901				
60	0.0755				
100	0.0747				
200	0.0683				
60	0.0709				
100	0.0688				
200	0.0697				
60	0.0734				
200	0.0708				
Average	0.0762				

Table S3: Calculation of an average dn/dc value obtained

Figure S5: GPC chromatograms (RI) showing p(nBuMA) molecular weight distributions across targeted DP_n = 60 – 200 monomer units; polymerised in anhydrous MeOH at 25 °C.

Synthesis of *p*(*n*BuMA)_x homopolymers in IPA

In a typical synthesis, targeting a $DP_n = 60$ monomer units, $p(nBuMA)_{60}$, nBuMA (0.85 g, 6 mmol) and bpy (31.2 mg, 0.2 mmol) were added to a 15 mL roundbottomed flask equipped with a magnetic stirrer bar. IPA (1.08 mL; 50 wt%) (deoxygenated via N₂ purge prior to use) was added and the resulting solution was sparged with N₂ for 10 minutes. Cu(I)Cl (9.9 mg, 0.1 mmol) was rapidly added to the flask, instantly forming a brown coloured mixture and purged with N₂ for a further 5 minutes. The flask was submerged into an oil bath pre-heated at 60 °C and ethyl α bromoisobutyrate (14.7 μ L, 0.1 mmol) was added under N₂ flow using a microsyringe. The mixture was stirred at 60 °C for 24 hours before termination by dilution with THF until appearance of a blue/green colour. The solution was passed though a neutral alumina column to remove residual catalyst and concentrated by rotary evaporation. The polymer was precipitated into cold MeOH to give a white solid.

Figure S6: GPC chromatograms (RI) showing p(nBuMA) molecular weight distributions across targeted DP_n = 60 – 200 monomer units; polymerised in IPA at 60 °C.

Figure S7: GPC chromatograms (RI) showing p(nBuMA) molecular weight distributions across targeted DP_n = 60 – 200 monomer units; polymerised in IPA at 25 °C.

Figure S8: Chromatographic (RI) molecular weight distributions of $p(nBuMA)_x$ polymerised in anhydrous MeOH (blue traces) and IPA (red traces) at 60 °C; i) p(nBuMA) targeting DP_n = 60 monomer units, ii) p(nBuMA) targeting DP_n = 100 monomer units, and iii) p(nBuMA) targeting DP_n = 200 monomer units.

Synthesis of $p(nBuMA)_x$ homopolymers using PMDETA as catalyst ligand

In a typical synthesis, targeting a $DP_n = 60$ monomer units, $p(nBuMA)_{60}$, nBuMA (1.7 g, 12 mmol) and PMDETA (41.6 µL, 0.2 mmol) were added to a 25 mL roundbottomed flask equipped with a magnetic stirrer bar. MeOH (2.15 mL; 50 wt%) (deoxygenated via N₂ purge prior to use) was added and the resulting solution was sparged with N₂ for 10 minutes. Cu(I)Cl (19.8 mg, 0.2 mmol) was rapidly added to the flask, instantly forming a brown coloured mixture and purged with N₂ for a further 5 minutes. The flask was submerged into an oil bath pre-heated at 60 °C and ethyl α bromoisobutyrate (29.4 µL, 0.2 mmol) was added under N₂ flow using a microsyringe. The mixture was stirred at 60 °C for 48 hours before termination by dilution with MeOH until appearance of a blue/green colour. Upon cooling, the polymer precipitated and the supernatant containing the catalytic system was discarded. The polymer was dissolved in THF, passed though a neutral alumina column to remove residual catalyst and concentrated by rotary evaporation. The polymer was precipitated into cold MeOH to give a white solid.

Synthesis of *p*(*n*BuMA)_x homopolymers using Me₆TREN as catalyst ligand

In a typical synthesis, targeting a $DP_n = 60$ monomer units, $p(nBuMA)_{60}$, nBuMA (1.7 g, 12 mmol) and Me₆TREN (53.5 µL, 0.2 mmol) were added to a 25 mL roundbottomed flask equipped with a magnetic stirrer bar. MeOH (2.15 mL; 50 wt%) (deoxygenated via N₂ purge prior to use) was added and the resulting solution was sparged with N₂ for 10 minutes. Cu(I)Cl (19.8 mg, 0.2 mmol) was rapidly added to the flask, instantly forming a brown coloured mixture and purged with N₂ for a further 5 minutes. The flask was submerged into an oil bath pre-heated at 60 °C and ethyl α bromoisobutyrate (29.4 µL, 0.2 mmol) was added under N₂ flow using a microsyringe. The mixture was stirred at 60 °C for 48 hours before termination by dilution with MeOH until appearance of a blue/green colour. Upon cooling, the polymer precipitated and the supernatant containing the catalytic system was discarded. The polymer was dissolved in THF, passed though a neutral alumina column to remove residual catalyst and concentrated by rotary evaporation. The polymer was precipitated into cold MeOH to give a white solid.

				GPC (THF) ^c		
Target ^a DP _n	Ligand	Conversion (%)	M _n Theory ^b	M _n (g/mol)	M _w (g/mol)	Đ
60	Bpy	99	8640	13570	13950	1.03
60	PMDETA	99	8640	20350	29800	1.46
60	Me ₆ TREN	87	7620	38550	44550	1.16

Table S4: Methanolic ATRP of *n*BuMA at 60 °C using various ligands

^a Target DP_n calculated as [*n*BuMA]/[initiator]; ^b Theoretical M_n calculated as (Target DP_n x 142.2 gmol⁻¹)*actual fractional conversion achieved and includes initiator residue; ^c GPC utilising THF eluent and dn/dc = 0.0762 (averaged across 18 samples).

Figure S9: Photographs showing the solubility of the ligated Cu(I)Cl catalytic systems in, i) bulk, and in ii) methanolic solution.

Figure S10: Photographic qualitative evaluation of Cu(I)Cl:Bpy catalytic sytems in MeOH showing variation in Cu(0) formation by disproportionation at a 1:1 ratio (left) and 1:2 ratio(right) after 90 minutes at ambient temperature.