Supporting Information for

Novel Hydroxyl-containing Reduction-responsive Pseudo-poly(aminoacid) via Click Polymerization as Efficient Drug Carrier

Yanjuan Wu,^{a,b} Huihui Kuang,^{a,b} Zhigang Xie,^a Xuesi Chen,^a Xiabin Jing^a and

Yubin Huang*^{*a*}

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

E-mail: ybhuang@ciac.jl.cn; Fax: +86 431 85262769; Tel: +86 431 85262769

^bGraduate University of the Chinese Academy of Sciences, Beijing 100039, P. R. China

Contents of the Supplementary Information document:

Figure S1. ¹H NMR spectra of dialkyned monomer1.

Figure S2. ¹H NMR spectra of diazided monomer 2 (BAP).

Figure S3. ¹H NMR spectra of diazided monomer 3 (BAH).

Figure S4. FT-IR spectra of diazided monomer 2 (BAP) and monomer 3 (BAH).

Figure S5. FT-IR spectra of HRSCP and RSCP.

Figure S6. ¹H NMR spectra of control copolymer (mPEG-RSCP-mPEG).

Figure S7. Critical aggregation concentration (CAC) of mPEG-HRSCP-mPEG and mPEG-RSCP-mPEG.

Figure S8. mPEG-HPSCR-mPEG NPs' pH and reduction-sensitivity as a function of time.

Figure S9. Recorded images of water drops (10 μ L) on copolymer films.

Figure S10. DLS and TEM images of blank mPEG-RSCP-mPEG NPs and DOX-loaded mPEG-RSCP-mPEG NPs.

Figure S11. Zeta potential (mv) of blank mPEG-HRSCP-mPEG NPs and

DOX-loaded mPEG-HRSCP-mPEG NPs.

Figure S1. ¹H NMR for dialkyned monomers1 in CDCl₃.

Figure S2. ¹H NMR spectrum of BAP in CDCl₃.

Figure S3. ¹H NMR spectrum of BAH in CDCl₃.

Figure S4. FT-IR spectra of BAP and BAH.

Figure S5. FT-IR spectra of HRSCP and RSCP.

Figure S6. ¹H NMR characterization of mPEG-RSCP-mPEG.

Figure S7. (A) Critical aggregation concentration (CAC) of mPEG-HRSCP-mPEG NPs, (B) Critical aggregation concentration (CAC) of mPEG-RSCP-mPEG NPs ,derived from the plot of I 336/I 333 ratio vs copolymer concentration indistilled water. After calculation, CMC = 11.9×10^{-3} mg/mL, 1.84×10^{-3} mg/mL, respectively.

Figure S8. (A) DLS results of mPEG-HRSCP-mPEG NPs at distinct pH value. (B) changes of the average diameters at pH 5.0 at different time point. (C) DLS results of mPEG-HRSCP-mPEG NPs at pH 7.4 in response to 10 mM GSH.

Figure S9. Recorded images of water drops (10 μ L) on the surface of films of mPEG-HRSCP-mPEG (A) and mPEG-RSCP-mPEG (B).

Figure S10. Hydrodynamic radius distributions of (A) Blank mPEG-RSCP-mPEG NPs and (B) DOX-loaded mPEG-RSCP-mPEG NPs; TEM micrograph of (C) Blank mPEG-RSCP-mPEG NPs and (D) DOX-loaded mPEG-RSCP-mPEG NPs (scale bars: 500 nm).

Figure S11. Change in the zeta potential (mv) of blank mPEG-HRSCP-mPEG NPs in distilled water and DOX-loaded mPEG-HRSCP-mPEG NPs.