Electronic Supplementary Information

Effect of Cyano (CN)–group on the Properties of Benzodithiophene–Based Polymers in Planarity, Photovoltaic Performance and Film Morphologies

Jialing Lu,^a Jianyu Yuan,^a Wenping Guo,^b Xiaodong Huang,^a Zeke Liu,^a Haibing Zhao,^b Hai-Qiao Wang ,^a* Wanli Ma^a*

^a Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University 199 Ren-Ai
Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
^b Shanghai Ultra-precision Optical Engineering Center, and Key laboratory of Micro and Nano
Photonic Structures (Ministry of Education), Department of Optical Science and Engineering,
Fudan University, Shanghai 200433, China.

* Corresponding author. Tel.: +0086 051265880927

E-mail addresses: hqwang@suda.edu.cn (H.-Q. Wang), wlma@suda.edu.cn (W. L. Ma)

Fig. S1 Cyclic voltammograms of polymer films on a platinum electrode in acetonitrile solution containing $0.1 \text{ M Bu}_4\text{NPF}_6$ at a scan rate of 50 mV/s.

Fig. S2 Optimized geometries, molecular orbital surfaces and calculated HOMO/LUMO energy levels of the model compounds, obtained at the DFT/B3LYP/6-31GD level.

Fig. S3 1D-graph of GIXD of polymers.

Fig. S4 (a) Current density–voltage (*I*–*V*) curves of the PSCs based on polymer/PC₆₁BM (1:1.5, w/w) with (^a, empty symbol) and without DIO (full symbol); (b) $J^{1/2} \sim V$ characteristics of the hole–only devices based on polymer/PC₆₁BM measured at ambient temperature.

Fig. S5 HAADF–STEM images of polymer/PC₆₁BM blends (1:1.5 w/w) cast from chloroform or chloroform with 2% DIO.

Fig. S6 Contact angles of three polymers by dropping water on the polymer films cast from CHCl₃ solutions.

Fig. S7 ¹H NMR spectrum of monomer A_1 , A_2 and A_3 .

Fig. S10 ¹³C NMR spectrum of POT-DCN.

Fig. S11 Infrared spectra of three polymers. The spectra were recorded using KBr pellets.

Polymer	D/A	Solvent	Speed	Voc	$J_{\rm sc}$	FF	PCE
			(r)	(V)	(mA/cm ²)	(%)	(%)
POT–DH	1:3	CF	1500	0.69	4.52	66.2	2.06
	1:3	CF+2% DIO	1500	0.70	6.82	56.1	2.68
	1:2	CF	1500	0.73	3.35	68.1	1.67
	1:2	CF+2% DIO	1500	0.69	6.43	56.5	2.51
	1:1.5	CF	1500	0.70	4.12	60.5	1.74
	1:1.5	CF+2% DIO	1500	0.70	6.77	57.5	2.72
	1:1	CF	1500	0.70	3.85	61.5	1.66
	1:1	CF+2% DIO	1500	0.69	6.14	57.3	2.42
	1:3	CB	800	0.70	1.89	34.9	0.46
	1:3	CB +2% DIO	800	0.70	3.85	65.9	1.78
	1:2	CB	800	0.69	1.04	37.5	0.27
	1:2	CB +2% DIO	800	0.73	4.45	64.3	2.09
	1:1.5	CB	800	0.65	1.09	38.4	0.27
	1:1.5	CB +2% DIO	800	0.74	4.60	64.9	2.21
	1:1	CB	800	0.68	0.83	34.0	0.19
	1:1	CB +2% DIO	800	0.75	4.16	67.6	2.11
	1:3	ODCB	800	0.70	2.94	67.0	1.38
	1:3	ODCB +2% DIO	800	0.71	3.44	68.7	1.68
	1:2	ODCB	800	0.74	3.17	68.2	1.60
	1:2	ODCB +2% DIO	800	0.74	3.72	68.8	1.89
	1:1.5	ODCB	800	0.74	3.40	69.0	1.74
	1:1.5	ODCB +2% DIO	800	0.71	3.84	70.0	1.91
	1:1	ODCB	800	0.74	3.20	67.6	1.60
	1:1	ODCB +2% DIO	800	0.70	3.84	64.3	1.73

Table S1. Optimization of donor/acceptor ratio and solvent for polymer/PC $_{61}$ BM solar cells.

POT-HCN	1:3	CF	1500	0.79	2.34	61.0	1.13
	1:3	CF+2% DIO	1500	0.76	7.04	47.3	2.53
	1:2	CF	1500	0.80	2.13	61.3	1.04
	1:2	CF+2% DIO	1500	0.76	6.27	50.8	2.42
	1:1.5	CF	1500	0.83	2.45	59.6	1.21
	1:1.5	CF+1% DIO	1500	0.75	5.71	51.3	2.20
	1:1.5	CF+2% DIO	1000	0.76	5.57	50.9	2.15
	1:1.5	CF+2% DIO	1200	0.78	5.29	51.4	2.12
	1:1.5	CF+2% DIO	1400	0.78	5.93	48.6	2.25
	1:1.5	CF+2% DIO	1500	0.79	7.05	54.4	3.03
	1:1.5	CF+3% DIO	1500	0.76	5.97	51.5	2.34
	1:1	CF	1500	0.75	1.23	55.4	0.51
	1:1	CF+2% DIO	1500	0.78	6.32	49.9	2.46
	1:3	CB	800	0.65	1.69	44.8	0.49
	1:3	CB+2% DIO	800	0.73	4.67	55.6	1.90
	1:2	CB	800	0.64	1.61	50.0	0.52
	1:2	CB+2% DIO	800	0.70	5.39	54.8	2.07
	1:1.5	CB	800	0.65	1.51	49.4	0.48
	1:1.5	CB+2% DIO	800	0.74	5.15	59.8	2.28
	1:1	CB	800	0.69	1.29	47.0	0.42
	1:1	CB+2% DIO	800	0.75	4.68	58.2	2.04
	1:3	ODCB	800	0.74	2.33	52.2	0.90
	1:3	ODCB+2% DIO	800	0.74	2.55	55.0	1.04
	1:2	ODCB	800	0.74	3.92	58.2	1.69
	1:2	ODCB+2% DIO	800	0.76	3.50	58.1	1.55
	1:1.5	ODCB	800	0.79	3.82	58.2	1.76
	1:1.5	ODCB+2% DIO	800	0.75	3.95	57.7	1.71
	1:1	ODCB	800	0.75	3.88	61.7	1.80
	1:1	ODCB+2% DIO	800	0.78	4.20	59.5	1.95
POT-DCN	1:1.5	CF	1500	0.80	0.07	24.0	0.01
	1:1.5	CF+2% DIO	1500	0.77	0.14	28.8	0.03
	1:1.5	СВ	800	0.75	0.09	25.0	0.02
	1:1.5	CB+2% DIO	800	0.72	0.15	27.5	0.03
	1:1.5	ODCB	800	0.78	0.10	28.9	0.02
	1:1.5	ODCB +2% DIO	800	0.74	0.13	30.1	0.03