## **Supporting Information**

## Poly(acrylate) with pendant aggregation-induced emission (AIE) tetraphenylethene luminogens: Highly stable AIE polymer nanoparticles for effective detection of nitro-compounds

Hui Zhou, a Jiesheng Li, Ming Hui Chua, Hong Yan, Bengzhong Tang, b, \* Jianwei Xua,\*

jw-xu@imre.a-star.edu.sg; tangbenz@ust.hk

<sup>a</sup> Institute of Materials Research and Engineering, A\*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore.

<sup>b</sup> Department of Chemistry, Center for Display Research, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon Hong Kong (PR China)



**Figure S1.** (A) FL spectra of **P2** in THF/H<sub>2</sub>O mixtures with different H<sub>2</sub>O contents  $(\lambda_{ex} = 318 \text{ nm}, [P2] = 100.0 \text{ } \mu\text{g} \cdot \text{mL}^{-1}$ , inserted picture is photographs of **P2** solutions taken under UV illumination). (B) Change of FL maximum of **P2** with H<sub>2</sub>O content of the aqueous mixture.



**Figure S2.** (A) FL spectra of **P3** in THF/H<sub>2</sub>O mixtures with different H<sub>2</sub>O contents  $(\lambda_{ex} = 318 \text{ nm}, [P3] = 100.0 \text{ } \mu\text{g} \cdot \text{mL}^{-1}$ , inserted picture is photographs of **P3** solutions taken under UV illumination). (B) Change of FL maximum of **P3** with H<sub>2</sub>O content of the aqueous mixture.



**Figure S3.** (A) Fluorescence spectra of 100.0  $\mu$ g•mL<sup>-1</sup> **P2** in THF/H<sub>2</sub>O (1:9 v/v) mixture in the presence of different PA concentrations ( $\mu$ g•mL<sup>-1</sup>), the insets display the photo of **P2** in the absence and presence of 100  $\mu$ g•mL<sup>-1</sup> PA under UV light (365 nm) illumination. (B) Concentration-dependent fluorescence quenching of **P2** by PA.



**Figure S4.** (A) Fluorescence spectra of 100.0  $\mu$ g•mL<sup>-1</sup> **P3** in THF/H<sub>2</sub>O (1:9 v/v) mixture in the presence of different PA concentrations ( $\mu$ g•mL<sup>-1</sup>), the insets display the photo of **P3** in the absence and presence of 100  $\mu$ g•mL<sup>-1</sup> PA under UV light (365 nm) illumination. (B) Concentration-dependent fluorescence quenching of **P3** by PA.



**Figure S5.** (a) Fluorescence spectra of polymer **P1** (100.0, 50.0, 25.0 and 12.5  $\mu$ g•mL<sup>-1</sup>) in THF/H<sub>2</sub>O (1:9 v/v) mixtures in the absence and presence of equal PA concentration. (b) Fluorescence quenching of polymer **P1** in THF/H<sub>2</sub>O (1:9 v/v) mixtures at different concentrations.



**Figure S6.** (A) Fluorescence spectra of 50.0  $\mu$ g•mL<sup>-1</sup> **P1** in THF/H<sub>2</sub>O (1:9 v/v) mixture in the presence of different PA concentrations ( $\mu$ g•mL<sup>-1</sup>). (B) Concentration-dependent fluorescence quenching of **P1** by PA.



**Figure S7.** (A) Fluorescence spectra of 25.0  $\mu$ g•mL<sup>-1</sup> **P1** in THF/H<sub>2</sub>O (1:9 v/v) mixture in the presence of different PA concentrations ( $\mu$ g•mL<sup>-1</sup>). (B) Concentration-dependent fluorescence quenching of **P1** by PA.



**Figure S8.** (A) Fluorescence spectra of 12.5  $\mu$ g•mL<sup>-1</sup> **P1** in THF/H<sub>2</sub>O (1:9 v/v) mixture in the presence of different PA concentrations ( $\mu$ g•mL<sup>-1</sup>). (B) Concentration-dependent fluorescence quenching of **P1** by PA.