Supporting Information

Improvement of the Control over SARA ATRP of 2-(Diisopropylamino)ethyl Methacrylate by Slow and Continuous Addition of Sodium Dithionite

Joana R. Góis,^a Dominik Konkolewic,^b Anatoliy V. Popov,^c Tamaz Guliashvili,^d Krzysztof Matyjaszewski,^b Arménio C. Serra,^a Jorge F. J. Coelho^a*

^a CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. Fax: +351 239 798 703; Tel:+351 239 798 764; E-mail: jcoelho@eq.uc.pt

^b Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States. E-mail: km3b@andrew.cmu.edu

^c Department of Radiology, University of Pennsylvania, Philadelphia, PA19104, United States.

^dHome Address: 1761 Foster Street, F5B, Philadelphia PA 191116, United States. Email: tamazguliasvili@yahoo.com

Results

Fig. S1 Effect of target DP on the SARA ATRP of DPA in isopropanol/water = 0.95/0.05 (v/v) at 40 °C. (A) First-order kinetic plot, (B) evolution of molecular weight and M_w/M_n with conversion (the dashed line represents theoretical molecular weight at a given conversion). Reaction conditions: [DPA]₀ /[EBPA]₀ /[Rua₂S₂O₄]₀ /[CuBr₂]₀ /[Me₆TREN]₀ = 100/1/0.5/0.1/0.1 (molar) and [DPA]₀ /[EBPA]₀ /[EBPA]₀ /[Rua₂S₂O₄]₀ /[CuBr₂]₀ /[Me₆TREN]₀ = 50/1/0.5/0.1/0.2.

Fig. S2 SARA ATRP of DPA with Na₂S₂O₄, in isopropanol/water = 0.95/0.05 (v/v) at 40 °C. (a) Firstorder kinetic plot, (b) evolution of molecular weight and M_w/M_n with conversion (the dashed line represents theoretical molecular weight at a given conversion). Conditions: [DPA]₀/[EBiB]₀/[Na₂S₂O₄]₀/[CuBr₂]₀/[Me₆TREN]₀ = 100/1/0.3/0.1/0.1 (molar).

Fig S3 SARA ATRP of DPA with feeding rate of aqueous solution of $Na_2S_2O_4$, 39.1nmol/min, in isopropanol/water = 0.95/0.05 (v/v) at 40 °C. (a) First-order kinetic plot, (b) evolution of molecular weight and M_w/M_n with conversion (the dashed line represents theoretical molecular weight at a given conversion). Conditions: [DPA]₀/[EBPA]₀/[Na₂S₂O₄]₀/[CuBr₂]₀/[Me₆TREN]₀ = 100/1/0/0.1/0.2 (molar).

Fig S4 Effect of the feeding rate (FR_{Na2S2O4}) on the polymerization rate; $\ln([M_0]/[M])/time vs \sqrt{FR_{Na2S2O4}}$.

Fig S5 ¹H NMR spectra of poly(OEOMA₄₇₅-*b*-DPA) block copolymer in CDCl₃, $M_{n,GPC}$ =23,200g/mol; $M_w/M_n = 1.29$