Supporting Information

Zirconocene-Catalyzed Stereoselective Cyclocopolymerization of 2-Methyl-

1,5-Hexadiene with Propylene

Manuela Bader,^{a,†} Gabriel Theurkauff,^{a,†} Katty Den Dauw,^b Christian Lamotte,^b Olivier

Lhost,^b Evgueni Kirillov,^{a,*} and Jean-François Carpentier^{a,*}

 ^a Organometallics, Materials and Catalysis laboratories, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, F-35042 Rennes, France
^b Total Raffinage Chimie, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium

Figure S1. ¹H NMR spectrum of PP copolymers with model olefins 8-TMSO and 1,6-MOD.

Figure S2. ¹H NMR spectrum of a P(P-*co*-MHB) copolymer produced with constrained geometry catalyst **4**/MAO.

Figure S3. GPC trace of a P(P-*co*-MHB) copolymer produced with 1/MAO.

Figure S4. GPC trace of a P(P-co-MHB) copolymer produced with 2/MAO.

Figure S5. GPC trace of a P(P-*co*-MHB) copolymer produced with 3/MAO.

Figure S6. DSC thermogram of a P(P-*co*-MHB) copolymer produced with 1/MAO.

Figure S7. DSC thermogram of a P(P-*co*-MHB) copolymer produced with 2/MAO.

Figure S8. DSC thermogram of a P(P-co-MHB) copolymer produced with 3/MAO.

[†] Those two authors equally contributed to this work.

^{*} Correspondence to Evgueni Kirillov (<u>evgueni.kirillov@univ-rennes1.fr</u>) and Jean-François Carpentier (jeanfrancois.carpentier@univ-rennes1.fr); Fax: +33 (0)223236938.

Figure S1: ¹H NMR (398 K, C₂D₂Cl₄, 500 MHz) of PP copolymers with model olefins 8-TMSO (top spectrum) and 1,6-MOD (bottom spectrum) (Table 1, entries 15 and 16).

Figure S2: ¹H NMR (398 K, 1,2,4-trichlorobenzene/C₆D₆ (5:1), 500 MHz) of a P(P-*co*-MHB) copolymer produced with constrained geometry catalyst 4/MAO ($n_{MHDi} = 12.0 \text{ mmol and } [Ti] = 18.0 \text{ µmol}.L^{-1}$; Table 1, entry 13).

Figure S3: GPC trace of a P(P-*co*-MHB) copolymer produced with 1/MAO ($n_{MHDi} = 1.8$ mmol and [Zr] = 3.8 µmol.L⁻¹; Table 1, entry 2).

Figure S4: GPC trace of a P(P-*co*-MHB) copolymer produced with 2/MAO ($n_{MHDi} = 12.0$ mmol and [Zr] = 11.0 µmol.L⁻¹; Table 1, entry 7).

Figure S5: GPC trace of a P(P-*co*-MHB) copolymer produced with 3/MAO ($n_{MHDi} = 12.0$ mmol and [Zr] = 9.3 µmol.L⁻¹; Table 1, entry 11).

Figure S6: DSC thermogram of a P(P-*co*-MHB) copolymer produced by 1/MAO ($n_{MHDi} = 1.8$ mmol and [Zr] = 3.8 µmol.L⁻¹; Table 1, entry 3).

Figure S7: DSC thermogram of a P(P-*co*-MHB) copolymer produced by 2/MAO ($n_{MHDi} = 12.0 \text{ mmol and } [Zr] = 9.3 \mu \text{mol.L}^{-1}$; Table 1, entry 8).

Figure S8: DSC thermogram of a P(P-*co*-MHB) copolymer produced by 3/MAO ($n_{MHDi} = 12.0 \text{ mmol and } [Zr] = 9.3 \mu \text{mol}.L^{-1}$; Table 1, entry 11).