Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2014

Journal Name RSCPublishing

ARTICLE

Electronic Supplementary Information (ESI)

Highly homogeneous core-sheath polyaniline nanofibers by polymerisation on wire-shaped template

Rossella Castagna¹, Roberto Momentè¹, Giorgio Pariani², Giuseppe Zerbi¹, Andrea Bianco², Chiara Bertarelli^{1,3*}

Dipartimento di Chimica Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy

²Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate, Italy

³Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy

Table of contents:

Figure 1 : SEM images of N-FeA nanofibers.

Figure 2: Optical images of N-FeH nanofibers.

Figure 3: SEM images of N-ADPA nanofibers.

Figure 4: UV- vis reflectance spectra of N6, N-sADPA and N-ADPA nanofibers.

Figure 5: FTIR spectra of N6, N-sADPA nanofibers and ADPA molecule.

Figure 6: SEM images of N-sADPA after oxidative polymerization.

Figure 7: UV-vis reflectance spectra of N-sADPA after oxidative polimerization.

Figure 8: UV-vis reflectance spectra of N-sADPA after doping treatment.

Figure 9: Diameter distribution of N-sFeH electrospun nanofibers after diffusion step

Figure 10: Diameter distribution of N-sADPA electrospun nanofibers before and after oxidative polymerization.

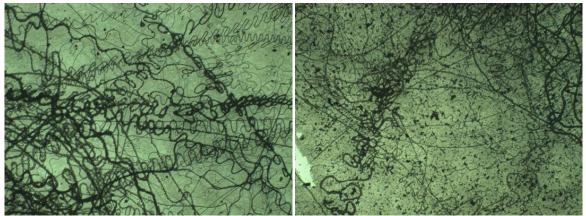

Figure 11: FTIR spectra of N-sADPA before and after base treatment

Table 1: Assignment of the main IR band.

ARTICLE Journal Name

Figure 1. SEM images of N-FeA electrospun nanofibers (on the left) and N-FeH electrospun nanofibers (on the right) at 15 kV with a flow rate of 0.05 mL/h.

Figure 2. OM images of N-FeH (8,85% FeCl₃ · 6H₂O) electrospun nanofibers after polymerization treatment (left: $t_{DIFF} = 60^{\circ} + t_{OX} = 30^{\circ}$; right: $t_{DIFF} = 75^{\circ} + t_{OX} = 60^{\circ}$).

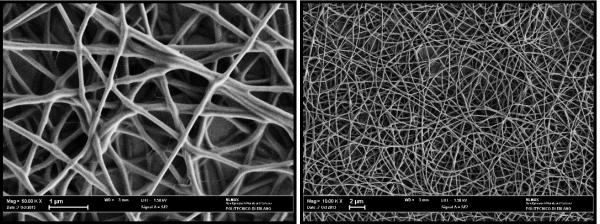
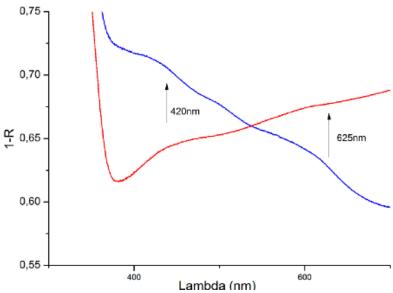



Figure 3. SEM images of N-ADPA (67 wt% ADPA) electrospun nanofibers at different magnifications.

Journal Name ARTICLE

Figure 4. UV-Vis reflectance spectra of N6 fibers and N-sADPA nanofibers (blue); N-ADPA nanofibers (red). Magnification of the region between 300 and 700 nm.

Figure 5. FTIR spectra in the region 3500-2600 cm-1 of electrospun N6 (blue line) and N-sADPA mats (red line), and ADPA film (green line).

ARTICLE Journal Name

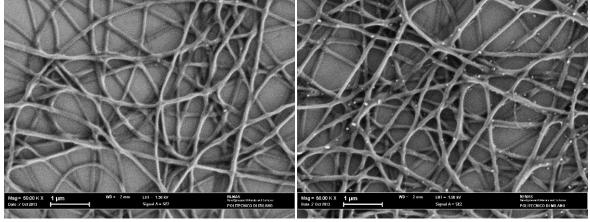
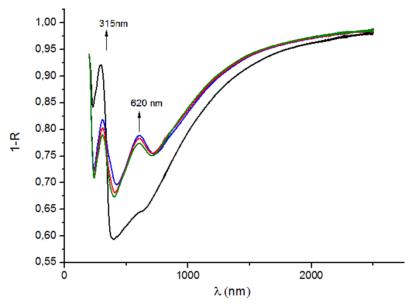
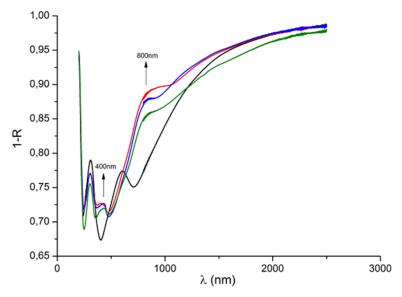




Figure 6. SEM images of N-sADPA (67 wt% ADPA) electrospun fibers polymerized in an oxidation bath containing p-TSA (0.175 M) after an oxidative polymerization treatment ($t_{OX} = 150 \text{ s}$).

Figure 7. UV-Vis reflectance spectra of N-sADPA (67 wt% ADPA) electrospun nanofibers: washed sample (black); $t_{OX} = 20$ s (blue); $t_{OX} = 50$ s (red); $t_{OX} = 120$ s (green).

Journal Name ARTICLE

Figure 8. UV-Vis reflectance spectra of N-sADPA (67 wt% ADPA) electrospun nanofibers: t_{OX} = 150 s (black); t_{DOP} = 30 s (green); t_{DOP} = 60 s (red); t_{DOP} = 60 s after 1 h (blue).

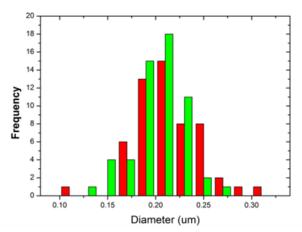


Figure 9. Diameter distribution of N-sFeH electrospun nanofibers after diffusion step: $t_{DIFF} = 120$ ' (red) mean diameter is 214 ± 35 nm and $t_{DIFF} = 180$ ' (green) mean diameter is 200 ± 30 nm.

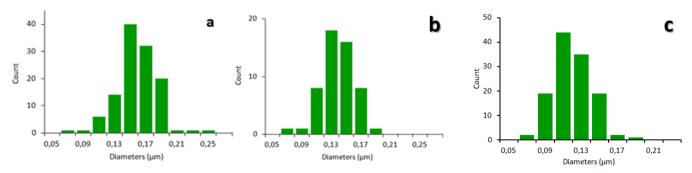
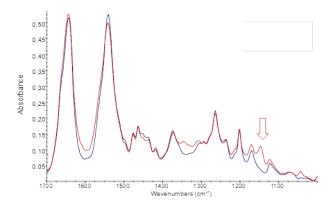



Figure 10. Diameter distribution of N-sADPA electrospun nanofibers: a) as spun; b) after oxidative polymerization ($t_{ox} = 150$ s).

ARTICLE Journal Name

Figure 11. FTIR spectra of N-sADPA (67 wt% ADPA vs Nylon 6) in wavenumbers range 1700-500 cm⁻¹: mat before and after base treatment (KOH 0.175 M). The red arrow indicates the band disappearing by treatment with base.

Wavenumber (cm ⁻¹)	Assignment	Material*	Wavenumber (cm ⁻¹)	Assignment	Material*
3450	Aromatic secondary amine: N-H stretching	ADPA	1600	Primary amine: N-H bending	ADPA
3380	Aromatic primary amine: N-H stretching	ADPA	1542	Amide II	Nylon 6
3300	Aliphatic secondary amine: N-H stretching	Nylon 6	1520-1490	Aromatic ring: stretch	ADPA
3100 - 3000	Aromatic ring C-H stretching	ADPA	1460-1440	-(CH ₂)- bending	Nylon 6
2930	-(CH ₂)- asymmetric C-H stretching	Nylon 6	1360	-(CH ₂)- wagging	Nylon 6
2850	-(CH ₂)- symmetric C-H stretching	Nylon 6	1350-1280	Aromatic secondary amine C-N stretch	ADPA
1650	Amide I	Nylon 6	830	Aromatic C-H 1,4- disubstituited phenyl out-of-plane bending	ADPA
1620	Aromatic ring: stretching	ADPA	750 - 700	Aromatic C-H Monosubstituited phenyl out-of-plane bending	ADPA

Table 1. Assignment of the main IR bands: main wavenumbers, IR mode and material correlation. (*N-phenyl-1,4-phenylenediamine - ADPA)