Synthesis of fluorinated alkoxyamines and alkoxyamine-initiated nitroxide-mediated precipitation polymerizations of styrene in supercritical carbon dioxide

Christopher Magee, Aruna Earla, Jennifer Petraitis, Chad Higa, Rebecca Braslau, Per B. Zetterlund and Fawaz Aldabbagh

Electronic Supplementary Information (ESI)

Figure S1. ¹H NMR spectrum of F-TIPNO alkoxyamine 1b

Figure S2. ¹³C NMR spectrum of F-TIPNO alkoxyamine 1b

Figure S3. DEPT of F-TIPNO alkoxyamine 1b

Figure S4. ¹⁹F NMR of F-TIPNO alkoxyamine 1b

Figure S5. ¹H NMR of F-Si-TIPNO alkoxyamine 1c

Figure S6. ¹³C NMR of F-Si-TIPNO alkoxyamine 1c

Figure S7. DEPT of F-Si-TIPNO alkoxyamine 1c

Figure S8. ¹⁹F NMR of F-Si-TIPNO alkoxyamine 1c

Figure S9. ¹H NMR of TIPNO alkoxyamine F-Foot 2

Figure S10: ¹³C NMR of TIPNO alkoxyamine F-Foot 2

Figure S11: DEPT of TIPNO alkoxyamine F-Foot 2

Figure S12: ¹⁹F NMR of TIPNO alkoxyamine F-Foot 2

Figure S13. MWDs for alkoxyamine **1a** initiated NMP of styrene (50% w/v) at 110 °C using $[Monomer]_0/[Alkoxyamine]_0 = 384$: (a) Precipitation polymerizations in scCO₂ at 30 MPa; conversions are 23 (black), 42 (red) and 49% (green) and (b) solution polymerization in toluene; conversions are 27 (black), 40 (red), 55 (green), 63 (purple) and 72% (orange).

Figure S14. MWDs for alkoxyamine **1b** initiated NMP of styrene (50% w/v) at 110 °C using $[Monomer]_0/[Alkoxyamine]_0 = 384$: (a) Precipitation polymerizations in scCO₂ at 30 MPa; conversions are 8 (black), 17 (red), 21 (green), 35 (purple) and 43% (orange) and (b) solution polymerizations in toluene; conversions are 13 (black), 33 (red), 51 (green), 63 (purple), 74% (orange) and 80 % (blue).

Figure S15. MWDs for alkoxyamine **1c** initiated solution NMP of styrene (50% w/v) at 110 $^{\circ}$ C in toluene using [Monomer]₀/[Alkoxyamine]₀ = 384: conversions are 24 (black), 44 (red), 65 (green) and 75% (purple).

Figure S16. MWDs for the alkoxyamine **1d** initiated NMP of styrene (50% w/v) at 110 °C using [Monomer]₀/[Alkoxyamine]₀ = 384: (a) Precipitation polymerizations in scCO₂ at 30 MPa; conversions are 20 (black), 33 (red), 47 (green) and 62 (purple) and (b) solution polymerizations in toluene; conversions are 17 (black), 31 (red), 51 (green), 62 (purple) and 82% (orange).

Figure S17. MWDs for alkoxyamine **2** initiated solution NMPs of styrene (50% w/v) at 110 $^{\circ}$ C in toluene using [Monomer]₀/[Alkoxyamine]₀ = 384: conversions are 38 (black), 61 (red) and 78% (green).

Figure S18 The effect of free TIPNO on NMP in scCO₂ at 110 °C. (a) Conversion versus time and (b) M_n (closed symbols) and M_w/M_n (open symbols) vs conversion plots for TIPNO-**1a** alkoxyamine initiated precipitation NMP of styrene (50% w/v) using [Monomer]₀/[Alkoxyamine]₀ = 384 with [Free TIPNO]₀/[Alkoxyamine]₀ = 0.05 (diamonds) and [Free TIPNO]₀/[Alkoxyamine]₀ = 0 (circles).

Figure S19 MWDs for alkoxyamine **TIPNO-1a** initiated precipitation NMP of styrene (50% w/v) at 110 °C in scCO₂ using [Monomer]₀/[Alkoxyamine]₀ = 384 with [Free TIPNO]₀/[Alkoxyamine]₀ = 0.05: conversions are 19 (black), 29 (red) and 34% (green).