Supporting information

Enhanced drug toxicity by conjugation of platinum drugs to polymers with guanidine containing zwitterionic functional groups that mimic cell-penetrating peptides

Khairil Juhanni Abd Karim, Robert H. Utama, Hongxu Lu, Martina H. Stenzel

Figure S1 ¹*H NMR of SH-DAP-BOC in CDCl*₃. [A] MS-DAP-BOC, [B] thiolacetyl-DAP-BOC and [C] SH-DAP-BOC.

Figure S2 2D NMR (HSQC) of SH-DAP-BOC in DMSO-d6

Figure S3 FT-IR spectrum of modification of hydroxyl functional group of DAP-BOC [A] into free-thiol moiety, SH-DAP-BOC [B].

Figure S4 Reaction scheme of RAFT polymerisation [A] and the ¹H NMR of pure PVBC in DMSO-d6

Figure S5 HSQC of before [A] and after [B] RAFT-endgroup removal

Figure S6 Attachment of intercalating agent, 9-aminoacridine (AA), on vinylbenzyl chloride (VBC) monomer in the presence of triethylamine (TEA) in DMSO-d6 over 30 hours at ambient temperature. TEA = Et_3N , TEA* = $Et_3NH^+C\Gamma$ salt; the spectra at t=0 shows AA only

Figure S7 2D HSQC NMR in DMSO-d6 of PVBC after reaction with the intercalating agent, 9aminoacridine (AA), $P[VBC_{18}-(VBC-AA)_2]$

Figure S8 FT-IR spectra of PVBC [A] and PVBC attached 9-aminoacirdine, P[VBC₁₈-(VBC-AA)₂][B]

Figure S9 FT-IR spectra of SH-DAP-BOC [A], PVBC [B], P[VBC₁₈-(VBC-AA)₂] [C] and P[(VBC-AA)₂-(VBC-TG)_{13.7}-(VBC-SH-DAP-BOC)_{4.3}] [D].

Figure S10 Fluorescence emission spectra of $P[(VBC-AA)_2-(VBC-TG)_{13,7}-(VBC-SH-DAP-BOC)_{4,3}]$ (red curve) and AA (black curve, [AA] = 0.0001 mg/ml) in deionised water. (Excitation and emission wavelengths are λ_{ex} = 422 nm and λ_{em} = 455 nm respectively)

Figure S11 ¹*H NMR of methacrylate based arginine monomer (MA-ZWI) in DMSO-d6*

Figure S12. ¹H NMR of zwitterion polymer, $P(VBC)_{20}$ -b- $P(MA-ZWI)_7$ in DMSO-d6. The conversion was determined by comparing the signals corresponding to polystyrene (5, CH2-Cl, 2H) with the signal corresponding to the zwitterionic polymer (9, C-H, 1H)

Figure S13. FT-IR spectra of thiol-chloride products based on P(VBC)₂₀-b-P(MA-ZWI)₇

Figure S14. Cytotoxicity of Polymer A, B and C to A2780 cells. a, b, c are the polymer concentrations corresponding to 10 μ M Pt. a= 0.138 mg/mL, b = 0.122 mg/mL, c = 0.189 mg/mL. Polymer A was non-toxic to A2780 at all concentrations (0.276 mg/mL to 0.035 mg/mL); Polymer B at 0.244 mg/mL was slightly toxic to the cells while it was non-toxic when the concentration decreased; 0.378 mg/mL of Polymer C killed about 40% cells, however, it became non-toxic from 0.189 mg/mL.